УДК 544.[344+228]:546.[683+48+28+289+81]'23/24 DOI https://doi.org/10.32782/pcsd-2021-2-5

Іван ОЛЕКСЕЮК

доктор хімічних наук, професор, професор кафедри хімії та технологій Волинський національний університет імені Лесі Українки, просп. Волі, 13, м. Луцьк, Волинська обл., Україна, 43025 **ORCID:** 0000-0001-7206-4351

Андрій СЕЛЕЗЕНЬ

аспірант, Волинський національний університет імені Лесі Українки, просп. Волі, 13, м. Луцьк, Волинська обл., Україна, 43025 **ORCID:** 0000-0002-1174-7439

Олександр СМІТЮХ

кандидат хімічних наук, старший лаборант кафедри хімії та технологій, Волинський національний університет імені Лесі Українки, просп. Волі, 13, м. Луцьк, Волинська обл., Україна, 43025 ORCID: 0000-0003-1632-5849

Любомир ГУЛАЙ

доктор хімічних наук, професор, завідувач кафедри екології та природокористування, Волинський національний університет імені Лесі Українки, просп. Волі, 13, м. Луцьк, Волинська обл., Україна, 43025 **ORCID:** 0000-0003-3495-5027

Людмила ПІСКАЧ

кандидат хімічних наук, професор, професор кафедри хімії та технологій, Волинський національний університет імені Лесі Українки, просп. Волі, 13, м. Луцьк, Волинська обл., Україна, 43025 ORCID: 0000-0003-3117-4006 Scopus AuthorID: 6603765788.

Бібліографічний опис статті: Олексеюк, І., Селезень, А., Смітюх, О., Гулай, Л., Піскач, Л. (2021). Тетрарні халькогеніди систем $Tl_2X-B^{II}X-D^{IV}X_2$ (B^{II} – Cd, Hg, D^{IV} – Si, Ge; X – Se, Te). Проблеми хімії та сталого розвитку, 2, 26–37, doi: https://doi.org/10.32782/pcsd-2021-2-5

ТЕТРАРНІ ХАЛЬКОГЕНІДИ СИСТЕМ TI,X-B^{II}X-D^{IV}X, (B^{II} - Cd, Hg, D^{IV} - Si, Ge; X - Se, Te)

За результатами ренгенофазового аналізу побудовано ізотермічні перерізи систем Tl₂Se-CdSe-Ge(Sn)Se₂ при 570 К.

² У системі Tl₂Sé–CdŚe–GeSe₂ за температури відпалу у стані термодинамічної рівноваги встановлено утворення двох тетрарних сполук. Tl₂CdGeSe₄ утворюється на перерізі Tl₂GeSe₃–CdSe при співвідношенні вихідних компонентів 1:1:1, а Tl₂CdGe₃Se₈ – на перерізі Tl₂CdGeSe₄–GeSe₂ при співвідношенні компонентів 1:1:3. Ця квазіпотрійна система має дев'ять однофазних, сімнадцять двофазних і дев'ять трифазних полів. Розчинність на основі CdSe по переріза Tl₄GeSe₄–CdSe та Tl₂GeSe₃–CdSe знаходиться в межах 3 мол.%.

В системі Tl_2 Se_CdSe_SnSe_npu 570 K підтверджено існування сполуки Tl_2 CdSnSe₄ та зафіксовано наявність шести однофазних, десяти двофазних і п'яти трифазних полів.

Розшифровано кристалічну структуру чотирьох тетрарних сполук: $Tl_2CdGe_3Se_8$ та трьох ізоструктурних халькогенідів: Tl_2CdGes_4 , $Tl_2CdSiTe_4$, $Tl_2HgSiTe_4$, $Tl_2CdGe_3Se_8$ кристалізується в тригональній ПГ P2_2_2_2_3 параметрами: a = 0.7.6023(9), b = 1.2071(2), c = 1.7474(2) нм. $Tl_2B^{II}D^{IV}X_4$ кристалізуються в тетрагональній структурі з ПГ I-42т. Параметри комірок сполук: a = 0.80145(9), c = 0.67234(9) нм ($Tl_2CdGese_4$); a = 0.8049(6), c = 0.68573(8) нм ($Tl_2CdSnSe_4$); a = 0.84121(6), c = 0.70289(9) нм ($Tl_2CdSiTe_4$); a = 0.83929(4), c = 0.70396(5) нм ($Tl_2HgSiTe_4$). Розглянуто залежність об'єму просторової гратки та розрахованої густини від молярної маси у одинадцяти відомих раніше та трьох нововиявлених ізоструктурних (ПГ I-42т) сполуках $Tl_2B^{II}D^{IV}X_4$. Розглянуто залежність об'єму просторової гратки та розрахованої маси у одинадцяти відомих раніше та трьох нововиявлених (ПГ I-42т) сполуках $Tl_3B^{II}D^{IV}X_4$.

Ключові слова: талієвмісні тетрарні халькогеніди, фазові рівноваги, кристалічна структура, рентґенофазовий аналіз.

Ivan OLEKSEYUK

Doctor of Chemical Sciences, Professor, Professor at the Department of Chemistry and Technology, Lesya Ukrainka Volyn National University, 13 Voli ave., Lutsk, Volyn region, Ukraine, 43025 **ORCID:** 0000-0001-7206-4351

Andrii SELEZEN

Postgraduate, Lesya Ukrainka Volyn National University, 13 Voli ave., Lutsk, Volyn region, Ukraine, 43025 **ORCID:** 0000-0002-1174-7439

Oleksandr SMITIUKH

PhD in Chemistry, Senior Assistant at the Department of Chemistry and Technology, Lesya Ukrainka Volyn National University, 13 Voli ave., Lutsk, Volyn region, Ukraine, 43025 ORCID: 0000-0003-1632-5849

Liubomyr HULAI

Doctor of Chemistry, Professor, Head of the Department of Ecology and Nature Management, Lesya Ukrainka Volyn National University, 13 Voli ave., Lutsk, Volyn region, Ukraine, 43025 **ORCID:** 0000-0003-3495-5027

Lyudmyla PISKACH

PhD in Chemistry, Professor, Professor at the Department of Chemistry and Technology, Lesya Ukrainka Volyn National University, 13 Voli ave., Lutsk, Volyn region, Ukraine, 43025 **ORCID:** 0000-0003-3117-4006

To cite this article: Olekseyuk, I., Selezen, A., Smitiukh, O., Hulai, L. & Piskach, L. (2021). Tetrarni khalkohenidy system $Tl_2X-B^{II}X-D^{IV}X_2$ ($B^{II} - Cd$, Hg, $D^{IV}-Si$, Ge; X – Se, Te). [Four-elements chalcogenides of the systems $Tl_2X-B^{II}X-D^{IV}X_2$ ($B^{II} - Cd$, Hg, $D^{IV}-Si$, Ge; X – Se, Te). *Problems of Chemistry and Sustainable Development*, 2, 26–37, doi: https://doi.org/10.32782/pcsd-2021-2-5

FOUR-ELEMENTS CHALCOGENIDES OF THE SYSTEMS Tl₂X-B^{II}X-D^{IV}X₂ (B^{II} - Cd, Hg, D^{IV}- Si, Ge; X - Se, Te)

Isothermal sections of the Tl₂Se–CdSe–Ge(Sn)Se, systems at 570 K were investigated by XRD results. The formation of the two quaternary compounds was found in the Tl₂Se – CdSe – GeSe₂ system at the annealing temperature in the state of thermodynamic equilibrium. Tl₂CdGeSe₄ forms at the Tl₂GeSe₃–CdSe section at 1:1:1 ratio of the initial components, and the Tl₂CdGe₃Se₈ compound forms at the Tl₂CdGeSe₄–GeSe₂ section at the ratio of 1:1:3. This quasi-ternary system contains nine single-phase, seventeen two-phase, and nine three-phase fields. The solid solubility range of CdSe is within 3 mol.% at the Tl₂GeSe₄–CdSe sections. The existence of the Tl₂CdSnSe₄ compound was confirmed in the Tl₂Se–CdSe–SnSe, system at 570 K, and the formation

The existence of the Tl₂CdSnSe₄ compound was confirmed in the Tl₂Se–CdSe–SnSe₂ system at 570 K, and the formation of six single-phase, ten two-phase and five three-phase fields was found.

The crystal structure of four quaternary compounds, $Tl_2CdGe_3Se_8$ and three isostructural chalcogenides $Tl_2CdGeSe_4$, $Tl_2CdSiTe_4$, $Tl_2HgSiTe_3$, was determined. $Tl_2CdGe_3Se_8$ crystallizes in the orthorhombic symmetry, SG $P2_12_12_2$, lattice parameters a=0.76023(9), b=1.2071(2), c=1.7474(2) nm. $Tl_2B^{II}D^{IV}X_4$ crystallizes in the tetragonal structure, SG I-42m. The cell parameters of the compounds are: a=0.80145(9), c=0.67234(9) nm ($Tl_2CdGeSe_4$); a=0.8049(6), c=0.68573(8) nm ($Tl_2CdSnSe_4$); a=0.84121(6), c=0.70289(9) nm ($Tl_2CdSiTe_4$); a=0.83929(4), c=0.70396(5) nm ($Tl_2HgSiTe_4$). The dependence of the unit cell volume and the calculated density on the molar mass in eleven previously known and three newly discovered isostructural (SG I-42m) $Tl_2B^{II}D^{IV}X_4$ compounds was considered.

Key words: thallium-containing quaternary chalcogenides, phase equilibria, crystal structure, X-ray phase analysis.

Дослідження халькогенідних систем $A^{I}-B^{II}-D^{IV}-X$ ($B^{II}-Mn$, Fe, Co, Ni, Cd, Hg, Pb; $D^{IV}-Si$, Ge, Sn; X – S, Se, Te) за участю $A^{I} - луж-$ них металів, Cu, Ag значно розширює область пошуку нових напівпровідникових матеріалів.

У таких системах на квазіпотрійних перерізах $A_2^{I}X-B^{II}X-D^{IV}X_2$ утворюються тетрарні фази типу $A_2^{I}B^{II}D^{IV}X_4$ [1-10], окремі представники яких, уже зарекомендували себе в нелінійній оптиці та інших напрямках напівпровідникових

технологій. Зокрема, такі тетрарні сполуки як Li₂ZnGeS₄, Li₂CdGeSe₄, Li₂CdSnSe₄, Cu₂CdSiS₄, Cu₂CdGeSe₄, Cu₂CdSnSe₄, Cu₂ZnSiS₄, Ag₂ZnSnS₄, що належать до алмазоподібних напівпровідників із нормальною валентністю, проявляють високу ефективність генерації другої гармоніки, мають високу теплову стабільність та інші оптичні та термоелектричні властивості, через що є перспективними в застосуванні як елементи сонячних батареях та інших електронних пристроїв [11-19].

Іони Tl⁺¹ подібні до іонів лужних металів. Слід чекати, що атоми лужних металів у алмазоподібних фазах можна замінити атомами Талію і отримати ізоструктурні сполуки. Перші дослідження тетрарних сполук систем Tl-В^{II}-D^{IV}-Х розпочаті у 80-х роках XX ст., через що кількість робіт є обмеженою. Зокрема, при сплавлянні стехіометричних кількостей талій(I), плюмбум(II) та германій(IV) сульфідів отримано тетрарну сполуку Tl₂PbGeS₄, яка кристалізується в нецентросиметричній моноклінній структурі (ПГ Р2₁/а) [20]. У роботі [21] наведені результати вивчення кристалічної структури ряду тетрарних телуридів (Tl,MnGeTe₄, Tl,MnSnTe₄, Tl,CdGeTe₄, Tl₂CdSnTe₄, Tl₂HgGeTe₄, Tl₂HgSnTe₄). Ці сполуки ізоструктурні та кристалізуються в тетрагональній ПГ І-42т. Під час дослідження сульфуро- та селеновмісних квазіпотрійних систем Tl₂X-HgX-D^{IV}X₂ були виявлені сполуки типу Tl₂HgD^{IV}X₄ [22-24]. Структуру чотирьох із них $(Tl_HgSiSe_{4}[22], Tl_HgGeSe_{4}[23], Tl_HgSnS_{4}[24],$ Tl₂HgSnSe₄ [22]) розшифровано в ізотропному наближенні в межах моделі структури сполуки Tl,HgGeTe, [22]. Індексування дифрактограм показало належність їх кристалічної структури до ПГ *I*-42*m*. Такою ж структурою володіє отримана нами на перерізі Tl₂SnSe₂-CdSe сполука Tl₂CdSnSe₄ [25]. Серед аналогічних талієвмісних тетрарних сполук, знайдених у системах Tl₂X-PbX-D^{IV}X₂, визначено кристалічну структуру для Tl₂PbSiS₄ (моноклінна, ПГ $P2_1/a$) [26], яка є ізоструктурною до Tl₂PbGeS₄. Для ряду сполук $Tl_2B^{II}D^{IV}Te_4$ ($B^{II} - Mn$, Cd, Hg; $D^{IV} -$ Si, Ge, Sn) в роботі [21] досліджувалися термоелектричні властивості. Тетрарні талієвмісні сполуки, що характеризуються нецетросиметричною природою кристалічної структури, схильні до генерації другої гармоніки, двофотонної адсорбції, п'єзоелектричних ефектів

28

та інших нелінійно-оптичних властивостей [27-31].

В роботі представляються результати дослідження фізико-хімічної взаємодії в системах Tl₂Se–CdSe–Ge(Sn)Se₂ та розшифрувааання кристалічної структури чотирьох нових тетрарних сполук.

Вихідні бінарні сполуки Tl_2Se , CdSe, GeSe₂, SnSe₂ у досліджуваних квазіпотрійних системах плавляться конгруентно (Tl_2Se при 660 K, CdSe при 1509 K, GeSe₂ при 1015 K та SnSe₂ при 948 K) і є дальтонідами [32, 33]. У трьох обмежуючих системах Tl_2Se -GeSe₂, Tl_2Se -SnSe₂ та CdSe-GeSe₂ утворюються тетрарні сполуки Tl_4GeSe_4 , Tl_2GeSe_3 , $Tl_2Ge_2Se_5$, Tl_4SnSe_4 , Tl_2SnSe_3 , Cd_4GeSe_6 [34-38]. Ці сполуки характеризуються змішаним іонно-ковалентним зв'язком з різним ступенем іонності. Їх кристалографічні характеристики опубліковано в [32, 33, 39-47] та наведено в табл. 1.

Синтез зразків здійснювали однотемпературним методом в муфельній печі МП-60 сплавлянням простих речовин: талію, кадмію, германію, олова, селену (телуру) (вміст основного компонента 99,999 мас. %) та попередньо синтезованого HgTe (Hg 99,999 мас. %) у вакуумованих до тиску 1×10⁻² мм.рт.ст. кварцових ампулах. Режим синтезу зразків наступний: нагрів до 950 К зі швидкістю 20 К/год, 5 год витримки; нагрів до 1200 К (сіліцієвмісних зразків – до 1450 К) зі швидкістю 10 К/год, 5 год витримки. Охолодження до 570 К зі швидкістю 10 К/год і гомогенізуючий відпал за цієї температури 350 год. Після цього зразки загартовували у 20 %-ий водний розчин NaCl. Всього в системі Tl,Se-CdSe-GeSe, синтезовано 62 зразки, у системі Tl₂Se-CdSe-SnSe₂ - 57 зразків.

Порошкові рентгенограми для встановлення фазового складу синтезованих зразків отримували на дифрактометрі DRON 4-13 при Кα-випромінюванні в діапазоні 10°≤2θ≤80°. Кристалічну структуру нових тетрарних халькогенідів розраховували методом Рітвельда з використанням програмного пакету WinCSD [48]. Візуалізація елементів кристалічної структури проведена за допомогою програмного забезпечення Diamond.

За результатами рентгенофазового аналізу побудовано ізотермічні перерізи двох систем Tl₂Se–CdSe–Ge(Sn)Se₂ за 570 К. Підтверджено утворення бінарних Tl₂Se, CdSe, GeSe₂,

Таблиця 1

		2			
Сполина	ПГ	Параметри гратки, нм			Inc
Сполука		a	b	c	л-ра
Tl ₂ Se	P4/ncc	0.852	-	1.268	[32, 39]
CdSe	Р6 ₃ тс F-43т	0.4309	-	0.7021	[32]
		0.6084	-	-	
GeSe ₂	$P2_{1}/c$	0.7016	$1.6796 \\ \beta = 90.65^{\circ}$	1.1831	[40]
SnSe ₂	$P-3m^{1}$	0.3811	-	0.6137	[41]
Tl ₄ GeSe ₄	C2/c	1.1670	0.7317 $\beta = 106.54^{\circ}$	2.5603	[42]
Tl ₂ GeSe ₃	<i>P</i> -1	$\begin{array}{c} 0.6925\\ \alpha=90.55^{\circ} \end{array}$	0.6934 $\beta = 111.42^{\circ}$	$0.8771 \\ \gamma = 114.45^{\circ}$	[43]
Tl ₂ Ge ₂ Se ₅	C2/c	1.5602	$\beta = 107.10^{\circ}$	0.9052	[44]
Tl ₄ SnSe ₄	$P2_{1}/c$	0.8491(3)	0.8400(7) $\beta = 102.39^{\circ}$	1.580(1)	[45]
Tl ₂ SnSe ₃	Pnam	0.8051	0.8169	2.124	[46]
Cd ₄ GeSe ₆	Сс	1.2842	$0.7405 \\ \beta = 109.825^{\circ}$	1.2850	[47]

Кристалографічні характеристики бінарних та потрійних сполук у системах TLSe–CdSe–Ge(Sn)Se,

SnSe₂ і тернарних сполук Tl_4SnSe_4 , Tl_2SnSe_3 , Tl_4GeSe_4 , Tl_2GeSe_3 , $Tl_2Ge_2Se_5$, Cd_4GeSe_6 у відповідних системах. Результати ідентифікації цих сполук добре узгоджуються з літературними даними [32, 33, 39-47].

Ізотермічний переріз системи $Tl_2Se-CdSe-GeSe_2$ за температури 570 К зображено на рис. 1. $Tl_2CdGeSe_4$ утворюється на перерізі Tl_2GeSe_3-CdSe при співвідношенні вихідних компонентів 1:1:1, а $Tl_2CdGe_3Se_8$ – на перерізі $Tl_2CdGeSe_4-GeSe_2$ при співвідношенні компонентів 1:1:3. В системі за температури відпалу у стані термодинамічної рівноваги перебуває дев'ять однофазних, сімнадцять двофазних і дев'ять трифазних полів. Розчинність на основі CdSe по перерізах Tl_4GeSe_4-CdSe та Tl_2GeSe_3-CdSe знаходиться в межах 3 мол.%.

Ізотермічний переріз системи $Tl_2Se-CdSe-SnSe_2$ при 570 К представлено на рис. 2. В цій системі при 570 К наявні шість однофазних, десять двофазних і п'ять трифазних полів. Підтверждено утворення нової тетрарної фази $Tl_2CdSnSe_4$, що утворюється на квазібінарному перерізі $Tl_2SnSe_3-CdSe,якмиповідомлялираніше$ $у [24]. Розчинність для <math>Tl_4SnSe_4$ складає 6 мол.% CdSe вздовж перерізу Tl_4SnSe_4 -CdSe,для Tl_2Se -Змол.%вздовжперерізу Tl_2Se -CdSe, для CdSe – 3 мол.% вздовж перерізів Tl_Se-CdSe, Tl_4SnSe_4 -CdSe, Tl_2SnSe_3 -CdSe.

Враховуючи утворення цих сполук, додатково було синтезовано два аналогічні тетрарні халькогеніди. Визначено кристалографічні параметри для Tl₂CdSiTe₄ та Tl₂HgSiTe₄.

Нові тетрарні сполуки $Tl_2CdGeSe_4$, $Tl_2CdSiTe_4$, $Tl_2HgSiTe_4 \epsilon$ ізоструктурними та кристалізуються в нецентросиметричній тетрагональній сингонії ПГ *I*-42*m*, символ Пірсона *t1*16.

Рис. 1. Ізотермічний переріз квазіпотрійної системи Tl₂Se–CdSe–GeSe₂ при 570 К

Рис. 2. Ізотермічний переріз квазіпотрійної системи Tl,Se–CdSe–SnSe, при 570 К

Їх структуру розшифровано в ізотропному наближенні в межах моделі структури сполуки $Tl_2HgGeTe_4$ [20] та представлено у табл. 2 (дані для $Tl_2CdSnSe_4$ взяті з статті [24]). За розташуванням атомів халькогену в межах другого координаційного оточення (ДКО), структура досліджуваних сполук подібна до структури сполуки TlSe [48] – анізотропного напівпровідника з ланцюговою структурою складу $Tl^+[Tl^{3+}Se_2]$, або до сполуки TlInSe₂[49], що виступає надструктурою до неї, у яких атоми одно- та тривалентного Талію (чи Індію в TlInSe₂) займають аналогічні положення у вузлах катіонної підґратки і мають таку ж аніонну підґратку. Обидві сполуки кристалізуються в тетрагональній ґратці з ПГ *I*4/*mcm*.

На рис. 3 наведені експериментальні, теоретичні та різницеві між ними рентгено-дифракційні спектри вищезазначених тетрарних сполук.

Параметри елементарних комірок сполук $Tl_2B^{II}D^{IV}X_4$, які кристалізуються в тетрагональній сингонії ПГ *I*-42*m*, в основному узгоджуються з загальновідомими закономірностями і перебувають в залежності від природи атомів. В більшості випадків при збільшенні порядкових номерів і відповідно маси атомів, що входять у склад сполуки, збільшуються густина і розміри атома. В табл. З представлено зміну об'єму елементарної

комірки та густини відносно суми порядкових номерів елементів у сполуках Tl,B^{II}D^{IV}X₄.

Для порівняння були використані параметри гратки нових сполук та аналогічних талійвмісних тетрарних сполук з подібною будовою. Природа d-металів незначно впливає на розмірні параметри: заміна Mn→Cd у сполуках сприяє незначноному збільшенню, а Cd→Hg – незначному зменшенню кристалографічних параметрів комірки.

Таблиця 2

Емпірична формула	Tl ₂ CdGeSe ₄ [24]	Tl ₂ CdSnSe ₄	Tl ₂ CdSiTe ₄	Tl,HgSiTe4	
Просторова група	<i>I-42m</i>				
Формульна маса	909.57	955.67	1059.626	1147.84	
Параметри комірки:					
а (нм)	0.80145(9)	0.80490(6)	0.84121(6)	0.83929(4)	
с (нм)	0.67234(9)	0.68573(8)	0.70289(9)	0.70396(5)	
V (нм ³)	0.4319(2)	0.4443(1)	0.4974(2)	0.49587(9)	
F(000)	756.0	792.0	864.0	928.0	
Кількість атомних позицій	16.0	16.0	16.0	16.0	
Розрахункова густина, г/см ³	6.995(3)	7.144(2)	7.075(2)	7.687(2)	
Коефіцієнт абсорбції, 1/см	1167.94	1321.39	1756.94	1878.61	
Випромінювання; довжина хвилі, нм	CuK _a 0,154056				
Дифрактометр	Порошковий				
Спосіб обрахунку	Повнопрофільний		офільний		
$2\theta i \sin\theta/\lambda_{(Makc)}$	100.0 0.497				
Кількість атомних позицій	4	4	4	4	
R	0.1058	0.0815	0.0896	0.0619	
R _p	0.2653	0.2641	0.2074	0.1586	
Кількість вільних параметрів	14	14	14	14	

Результати розшифрування кристалічної структури сполук TLB^{II}D^{IV}X

Рис. 3. Експериментальні *(кола)* та теоретичні (*ліні*ї) дифракційні профілі та їх різницева для сполук: $a - \text{Tl}_2\text{CdGeSe}_4$, $b - \text{Tl}_2\text{CdSnSe}_4$, $c - \text{Tl}_2\text{CdSiTe}_4$, $d - \text{Tl}_2\text{HgSiTe}_4$

Таблиця 3

				2 4	
Сполука	ΠГ	М, г/моль	V, нм ³	Розрахункова густина, г/см ³	Л-ра
Tl ₂ HgSnS ₄		856.1	0.4138	6.871	[20]
Tl ₂ HgSnS ₄		909.8	0.4319	6.995	[*
Tl ₂ HgSiSe ₄		953.5	0.4284	7.390	[21]
Tl ₂ CdSnSe ₄		955.9	0.4439	7.144	[24]
Tl ₂ HgGeSe ₄		998.0	0.4322	7.716	[22]
Tl ₂ MnGeTe ₄		1046.7	0.4912	7.080	[20]
Tl ₂ HgSnSe ₄	I-42m	1044.1	0.4452	7.787	[21]
Tl ₂ CdSiTe ₄		1059.6	0.4974	7.075	[*
Tl ₂ MnSnTe ₄		1092.8	0.5076	7.150	[20]
Tl ₂ CdGeTe ₄		1104.2	0.4973	7.370	[20]
Tl ₂ HgSiTe ₄		1147.8	0.4959	7.687	[*
Tl ₂ CdSnTe ₄		1150.3	0.5123	7.460	[20]
Tl ₂ HgGeTe ₄		1192.4	0.4937	8.020	[20]
Tl ₂ HgSnTe ₄		1238.5	0.5047	8.150	[20]

Залежність об'єму просторової гратки та розрахованої густини від молярних мас в ізоструктурних сполуках Tl, BⁿD^{iv}X,

* – дана робота

Таблиця 4 Результати розшифрування кристалічної структури сполуки Tl₂CdGe₂Se₂

	2 3 0	
Сполука	Tl ₂ CdGe ₃ Se ₈	
Просторова група	$P2_{1}2_{1}2_{1}$	
Параметри комірки:		
а (нм)	0,76023(9)	
<i>b</i> (нм)	1,2071(2)	
с (нм)	1,7474(2)	
V (нм ³)	1,6036(6)	
F(000)	2312.0	
Кількість атомних позицій	56.0	
Розрахункова густина, г/см ³	5.676(2)	
Коефіцієнт абсорбції, 1/см	794.03	
Випромінювання;	CuK 1.54185	
довжина хвилі, нм		
Дифрактометр	Порошковий	
Спосіб обрахунку	Повнопрофільний	
Кількість атомних позицій	14	
Кількість вільних параметрів	58	
$2\theta i \sin\theta / \lambda_{(\text{Make})}$	100.05 0.497	
h(мін), k(мін), l(мін)	0 0 0	
h(макс), k(макс), l(макс)	7 11 17	
$R_I i R_w$	0.1204 0.2783	
Скалярний фактор	1.98(6)	
Вісь і параметр текстури	[010]0.134(5)	

Зменшення, очевидно, можна пояснити ефектом f-стиснення в атомі Hg. При заміні Ge \rightarrow Sn у нових, та аналогічних до них за структурою

талієвмісних тетрарних сполуках, взятих для порівняння (Tl₂Cd(Hg)GeSe₄(Te₄) \rightarrow Tl₂Cd(Hg) SnSe₄(Te₄) та Tl₂MnGeTe₄ \rightarrow Tl₂MnSnTe₄) спостерігається закономірне зростання об'єму просторової гратки. Однак заміна Si \rightarrow Ge у сполуках Tl₂Cd(Hg)Si(Te₄) \rightarrow Tl₂Cd(Hg)Ge(Te₄) призводить до зменшення комірки через ефект d-стиснення в атомі Ge. У всіх випадках при зміні S \rightarrow Se \rightarrow Te суттєво збільшуються розміри комірки. Розрахована густина суттєво зростає з молярною масою у всіх випадках заміщення дво-, чотири-, або шестивалентного елемента.

Тетрарна сполука $Tl_2CdGe_3Se_8$, що утворюється на перерізі $Tl_2CdGeSe_4$ –GeSe₂ квазіпотрійної системи Tl_2Se –CdSe–GeSe₂, кристалізується в нецентросиметричній ПГ $P2_12_12_1$ (CT Cs₂HgGe₃Se₈). На рис. 4 наведені її експериментальні, теоретичні та різницеві між ними рентгенодифракційні спектри.

Координати та кристалографічні параметри у структурі Tl₂CdGe₃Se₈ представлені в табл. 4.

Отже, за результатами рентгенофазовим аналізом побудовано ізотермічні перерізи систем Tl₂Se–CdSe–Ge(Sn)Se₂ при 570 К. Підтверджено існування сполуки Tl₂CdSnSe₄. Встановлено утворення та розшифровано кристалічну структуру чотирьох тетрарних сполук: Tl₂CdGe₃Se₈ та трьох ізоструктурних халькогенідів: Tl₂CdGeSe₄, Tl₂CdSiTe₄, Tl₂HgSiTe₄. Tl₂CdGe₃Se₈ кристалізується в тригональній ПГ $P2_12_12_1$ з параметрами: a=0, 7.6023(9),

Рис 4. Експериментальні *(кола)* та теоретичні *(лінії)* дифракційні профілі та їх різницева для сполуки Tl,CdGe₃Se₈

b=1,2071(2), c=1,7474(2) нм. $Tl_2B^{II}D^{IV}X_4$ кристалізуються в тетрагональній структурі з ПГ *I*-42*m*. Параметри комірок сполук: a = 0.80145(9),c = 0.67234(9) *nm* ($Tl_2CdGeSe_4$); a = 0.8049(6),c = 0.68573(8) *nm* ($Tl_2CdSnSe_4$); a = 0.84121(6),c = 0.70289(9) *nm* ($Tl_2CdSiTe_4$); a = 0.83929(4),c = 0.70396(5) *nm* ($Tl_2HgSiTe_4$). Розглянуто залежність об'єму просторової гратки та розрахованої густини від молярної маси у одинадцяти відомих раніше та трьох нововиявлених ізоструктурних (ПГ *I*-42*m*) сполуках $Tl_2B^{II}D^{IV}X_4$. Отримані сполуки, кристалізуючись в нецентросиметричній структурі представляють інтерес для подальших досліджень.

ЛІТЕРАТУРА:

1. Piskach L.V., Parasyuk O.V., Olekseyuk I.D. The phase equilibria in the quasi-ternary Cu₂S–CdS–SnS₂ system. *J. Alloys Compds.* 1998. 279(2). P. 142-152.

2. Kanno R., Hata T., Kawamoto Y., Irie M. Synthesis of a new lithium ionic conductor, thio-LISICON-lithium germanium sulfide system. *Solid State Ionics*, 2000. 130(1-2). P. 97-104.

3. Parasyuk O.V., Gulay L.D., Piskach L.V., Olekseyuk I.D. The Ag₂Se–CdSe–SnSe₂ system at 670 K and the crystal structure of the Ag₂CdSnSe₄ compound. *J. Alloys Compds.* 2002. 335(1-2). P. 176-180.

4. Parasyuk O.V., Gulay L.D., Piskach L.V., Kumanska Yu.O. The Ag₂Se–HgSe–SnSe₂ system and the crystal structure of the Ag₂HgSnSe₄ compound. *J. Alloys Compds*. 2002. 339(1-2). P. 140-143.

5. Parasyuk O.V., Gulay L.D., Romanyuk Y.E., Olekseyuk I.D, Piskach L.V. The Ag₂Se–HgSe–GeSe₂ system and crystal structures of the compounds. *J. Alloys Compds.* 2003. 351(1-2). P. 135-144.

6. Parasyuk O.V., Chykhrij S.I., Bozhko V.V. Piskach L.V., Bogdanyuk M.S., Olekseyuk I.D., Bulatetska L.V., Pekhnyo V.I. Phase diagram of the Ag₂S–HgS–SnS₂ system and single crystal preparation, crystal structure and properties of Ag₂HgSnS₄. *J. Alloys Compds.* 2005. 399(1-2). P. 32-37.

7. Olekseyuk I.D., Piskach L.V., Zhbankov O.Y., Parasyuk O.V., Kogut Yu.M. Phase diagrams of the quasi-binary systems Cu_2S-SiS_2 and Cu_2SiS_3-PbS and the crystal structure of the new quaternary compound Cu_2PbSiS_4 . J. Alloys Compds. 2005. 399(1-2). P. 149-154.

8. Parasyuk O.V., Fedorchuk A.O., Kogut Y.M. et al., The Ag₂S–ZnS–GeS₂ system: Phase diagram, glass-formation region and crystal structure of Ag₂ZnGeS₄. J. Alloys Compds. 2010. 500(1). P. 26-29.

9. Kogut Y., Fedorchuk A., Zhbankov O., Romanyuk Ya., Kityk I., Piskach L., Parasyuk O. Isothermal section of the Ag₂S–PbS–GeS₂ system at 300 K and the crystal structure of Ag₂PbGeS₄. J. Alloys Compds. 2011. 509(11). P. 4264-4267.

10. Schumer B. N., Downs R. T., Domanik Kenneth J., Andrade M., Origlieri M. J. Pirquitasite, Ag₂ZnSnS₄. Acta Cryst. 2013. 69(2). P. i8-i9.

11. Zhang J.-H., Clark D. J., Weiland A., Stoyko S. S., Soo Kim Y., Jang J. I., Aitken J. A. Li₂CdGeSe₄ and Li₂CdSnSe₄: biaxial nonlinear optical materials with strong infrared second-order responses and laser-induced damage thresholds influenced by photoluminescence. *Inorg. Chem. Front.* 2017. 4. P. 1472-1484.

12. He J., Guo Y., Huang W., Zhang X., Yao J., Zhai T., Huang F. Synthesis, Crystal Structure, and Optical Properties of Noncentrosymmetric Na₂ZnSnS₄. *Inorg. Chem.* 2018, 57(16), P. 9918-9924.

13. Brik M.G., Parasyuk O.V., Myronchuk G.L., Kityk I.V. Specific features of band structure and optical anisotropy of Cu₂CdGeSe₄ quaternary compounds. *Mat. Chem. Phys.* 2014. 147. P. 155-161.

14. Rincón C., Quintero M.E., Moreno P.Ch., Quintero E., Henao J.A., Macías M.A. Raman spectrum of Cu₂CdSnSe₄ stannite structure semiconductor compound. *Superlattices and Microstruct.* 2015. 88. P. 99-103.

15. Kogut Y., Khyzhun O.Y., Parasyuk O.V., Reshak A.H., Lakshminarayana G., Kityk I.V, Piasecki M. Electronic spectral parameters and IR nonlinear optical features of novel Ag_{0.5}Pb_{1.75}GeS₄ crystal. *J. Crystal Growth.* 2012. 354(1). P. 142-146.

16. Reshak A.H., Kogut Y.M., Fedorchuk A.O., Zamuruyeva O.V., Myronchuk G.L., Parasyuk O.V., Kamarudin H., Auluck S., Plucinski K.J., Bila J. Electronic and optical features of the mixed crystals $Ag_{0.5}Pb_{1.75}Ge(S_{1-x}Se_x)_4$. J. Mat. Chem. C. 2013. 1(31). P. 4667-4675.

17. Litvinchuk A.P., Dzhagan V.M., Yukhymchuk V.O., Valakh M.Ya., Babichuk I.S., Parasyuk O.V., Piskach L.V., Gordan O.D., Zahn D.R. T. Electronic structure, optical properties, and lattice dynamics of orthorhombic Cu_2CdGeS_4 and Cu_2CdSiS_4 semiconductors. *Phys. Rev B*. 2014. 90(16). P. 165-201.

18. Zhang Y., Sun X., Zhang P., Yuan X., Huang F., Zhang W. Structural properties and quasiparticle band structures of Cu-based quaternary semiconductors for photovoltaic applications. *J. Appl. Phys.* 2012. 111(6). P. 63709.

19. Huang Y., Wu K., Cheng J., Zhihua Y., Pan Sh. $\text{Li}_2\text{ZnGeS}_4$: a promising diamond-like infrared nonlinear optical material with high laser damage threshold and outstanding second-harmonic generation response. *Dalton Trans.* 2019. 48(14). P. 4484-4488.

20. Eulenberger G. Darstellung und Kristallstruktur des Dithallium(I) blei(II)- tetrathiogermanats(IV) Tl₂PbGeS₄ / Preparation and Crystal Structure of Dithallium(I) Lead(II) Tetrathiogermanate(IV). Z. Naturforsch. 1980. 35. P. 335-339.

21. McGuire M.A., Scheidemantel Th.J., Badding J.V., Badding John V., DiSalvo F. J. Tl_2AXTe_4 (A = Cd, Hg, Mn; X = Ge, Sn): Crystal Structure, Electronic Structure, and Thermoelectric Properties. *Chem. Mater.* 2005. 17. P. 6186-6191.

22. Mozolyuk M.Yu., Piskach L.V., Fedorchuk A.O., Olekseyuk I.D., Parasyuk O.V. Physico-chemical interaction in the Tl,Se–HgSe–D^{IV}Se, systems (D^{IV} – Si, Sn). *Mater. Res. Bull.* 2012. 47. P. 3830-3834.

23. Mozolyuk M.Yu., Piskach L.V., Fedorchuk A.O., Olekseyuk I.D., Parasyuk O.V. The Tl₂Se–HgSe–GeSe₂ system and the crystal structure of Tl₁HgGeSe₄. *Chem. Met. Alloys.* 2013. 6. P. 55-62.

24. Piskach L.V., Mozolyuk M.Yu., Fedorchuk A.O., Olekseyuk I.D., Parasyuk O.V. Phase equilibria in the Tl₂S-HgS-SnS₂ system at 520 K and crystal structure of Tl₂HgSnS₄. *Chem. Met. Alloys.* 2017. 10. P. 136-141.

25. Selezen A.O., Piskach L.V., Parasyuk O.V., Olekseyuk I.D. The Tl₂SnSe₃-CdSe System and the Crystal Structure of the Tl₂CdSnSe₄ compound. *J. Phase Equilib. Diffus.* 2019. 40, 6. P. 797-801.

26. Mozolyuk M.Yu., Piskach L.V., Fedorchuk A.O., Parasyuk O.V., Khyzhun O.Y. The Tl₂S–PbS–SiS₂ system and the crystal and electronic structure of quaternary chalcogenide Tl₂PbSiS₄. 2017. Mat. Chem. Phys. 195. P. 132-142.

27. Цісар О., Піскач Л., Бабіжецький В., Левицький В., Котур Б., Марушко Л., Олексеюк І., Парасюк О. Фазові рівноваги в системі Tl₂Se–In₂Se₃–GeSe₃ при 520 К. *Вісн. Львів. у-ту. Сер. хімічна.* 2018. 59(10). С. 46-52.

28. Davydyuk G.E., Piasecki M., Parasyuk O.V., Myronchuk G.L., Fedorchuk A. O., Danylchuk S.P., Piskach L.V., Mozolyuk M.Yu., AlZayed N. 2013. *Opt. Mater.* 35(12). P. 2514-2518.

29. Khyzhun O.Y., Fedorchuk A.O., Kityk I.V., Piasecki M., Mozolyuk M.Yu., Piskach L.V., Parasyuk O.V., ElNaggar A.M., Albassam A.A., Karasinski P. Electronic structure and laser induced piezoelectricity of a new quaternary compound TlInGe₃S₈. *Mat. Chem. Phys.* 2018. 204. P. 336-344.

30. Myronchuk G.L., Zamurueva O.V., Parasyuk O.V., Piskach L.V., Fedorchuk A.O., AlZayed N.S., El-Naggar A.M., Ebothe J., Lis M., Kityk I.V. Structural and optical properties of novel optoelectronic $Tl_{1-x}In_{1-x}Si_xSe_2$ single crystals.

J. Mat. Sci.: Mat. in Electr. 25(7). P. 3226-3232.

31. Myronchuk G.L., Davydyuk G.E., Parasyuk O.V., Khyzhun O.Y., Andrievski R.A., Fedorchuk A.O., Danylchuk S.P., Piskach L.V., Mozolyuk M.Y. $Tl_{1-x}In_{1-x}Sn_xSe_2$ (x = 0, 0.1, 0.2, 0.25) single-crystalline alloys as promising non-linear optical materials. *J. Mat. Sci.: Mat. in Electr.* 2013. 24(9). P. 3555-3563.

32. Абрикосов Н.Х., Банкина В.Ф., Порецкая Л.В. [и др.]. Полупроводниковые халькогениды и сплавы на их основе. Москва : Наука, 1975. С. 219.

33. Абрикосов Н.Х., Шелимова Н.Х. Полупроводниковые материалы на основе соединений А^{IV}В^{VI} / Москва : Наука, 1975. С. 195.

34. Glukh A.S., Sabov M.Yu., Barchii I.E., Tsigika V.V., Sidei V.I. Formation of ternary compounds in the Tl₂Se-GeSe, system. *Inorgan. Mater.* 2009. 45. P. 1172-1176.

35. Houenou P., Eholie R., Etude du systeme SnSe₂-Tl₂Se. Acad. Sci. Paris. 1976. 283. 16. P. 731-733.

36. Лазарев В.Б., Переш Е.Ю., Староста В.И., Мудрый В.В. Фазовые равновесия и свойства соединений в системах Tl₂S(Se)–SnS₂(Se₂). *Журн. неорг. химии.* 1985. 30(6). С. 1502-1506.

37. Mucha I., Wiglusz K., Sztuba Z., Gaweł W. Solid–liquid equilibria in the quasi-binary thallium(I) selenide–tin(IV) selenide system. *Comp. Coupl. Phase Diagr. and T U.H. hermochem.* 2009. 33. P. 545–549.

38. Один В.В., Гринко В.В., Новоселова А.В. Р-Т-Х фазовая диаграмма системы CdSe–GeSe. Журнал неорганической химии. 1986. 31(5). С. 1274–1277. 39. Стасова М.М., Вайнштейн Б.К. Электронографическое определение структуры Tl₂Se. *Кристаллография*. 1958. 3(2). С. 141-147.

40. Dittmar G., Schafer H. Die Kristallstruktur von germanium diselenid. Acta Cryst. B. 1976. 32. P. 2726-2728.

41. Busch G., Frohlich C., Hulliger F., Steimeier E. Structur, elektrische und thermoelektrische Eigenschaften von SnSe, *Helv. Phys. Acta.* 1961. 34. P. 359-368.

42. Glukh O.S., Sabov M.Yu., Barchij I.E., Pavlyuk V.V., Marciniak B. Crystal structure of the Tl₄GeSe₄ ternary compound. *Chem. Met. Alloys.* 2009 (2). P. 10-14.

43. Eulenberger G. Ternäre Thalliumchalkogenide mit Tl₄Ge₂S₆-Struktur. *Monatsh. Chem.* 1982. 113. P. 859-867.

44. Eulenberger G. $Tl_4Ge_4Se_{10}$, ein Thallium(1)selenogermanat mit adamantananalogem Anion $[Ge_4Se_{10}]^4$ / $Tl_4Ge_4Se_{10}$, a Thallium(I) Selenogermanate with the Adamantane-Like Anion $[Ge_4Se_{10}]^4$. Z. Naturforsch. 1981. 36. P. 521-523.

45. Akinocho G., Houenou P., Oyetola S., Eholie R., Jumas J. C., Olivier-Fourcade J., Maurin M. Étude structurale de Tl₄SnSe₄ J. Solid State Chem. 1991. 93(2). P. 336-340.

46. Jaulmes S., Houenou P., Structure cristalline du seleniure d'etain(IV) et de thallium(I): Tl₂SnSe₃. *Mater. Res. Bull.* 1980. 15(7). P. 911-915.

47. Henao J.A., Delgado J.M., Quintero M., X-ray powder diffraction data and structural study of Fe₂GeSe₄. *Powder Diffr*. 1998. 13(4) P. 202-209.

48. Akselrud L.G., Zavalii P.Yu., Grin Yu. et al., J. *WinCSD*: software package for crystallographic calculations (Version 4). J. Appl. Cryst. 2014. 47. P. 803-805.

49. Ketelaar J.A., t'Hart W.H., Moerel M., Polder D. The Crystal Structure of TlSe, Thallous Thallic or Thallosic Selenide. Z. Kristallog. A. 1939. 101 P. 396-404.

50. Müller D., Eulenberger G., Hahn H. Über ternäre Thalliumchalkogenide mit Thalliumselenidstruktur. Z. Anorg. Allg. Chem, 1973. 398. P. 207–220.

REFERENCES:

1. Piskach, L.V., Parasyuk, O.V., Olekseyuk, I.D. (1998). The phase equilibria in the quasi-ternary Cu₂S-CdS-SnS₂ system. J. Alloys Compds, 279(2). 142-152.

2. Kanno, R., Hata, T., Kawamoto, Y., Irie, M. (2000). Synthesis of a new lithium ionic conductor, thio-LISICONlithium germanium sulfide system. *Solid State Ionics*, 130(1-2), 97-104.

3. Parasyuk, O.V., Gulay, L.D., Piskach, L.V., Olekseyuk, I.D. (2002). The Ag₂Se–CdSe–SnSe₂ system at 670 K and the crystal structure of the Ag₂CdSnSe₄ compound. *J. Alloys Compds*. 335(1-2), 176-180.

4. Parasyuk, O.V., Gulay, L.D., Piskach, L.V., Kumanska, Yu.O. (2002). The Ag₂Se-HgSe-SnSe₂ system and the crystal structure of the Ag₂HgSnSe₄ compound. *J. Alloys Compds*. 339(1-2), 140-143.

5. Parasyuk, O.V., Gulay, L.D., Romanyuk, Y.E., Olekseyuk, I.D, Piskach, L.V. (2003). The Ag₂Se–HgSe–GeSe₂ system and crystal structures of the compounds. *J. Alloys Compds*. 351(1-2), 135-144.

6. Parasyuk, O.V., Chykhrij, S.I., Bozhko, V.V. Piskach, L.V., Bogdanyuk, M.S., Olekseyuk, I.D., Bulatetska, L.V., Pekhnyo, V.I. (2005). Phase diagram of the Ag₂S–HgS–SnS₂ system and single crystal preparation, crystal structure and properties of Ag₂HgSnS₄. *J. Alloys Compds*. 399(1-2), 32-37.

7. Olekseyuk, I.D., Piskach, L.V., Zhbankov, O.Y., Parasyuk, O.V., Kogut, Yu.M. (2005). Phase diagrams of the quasi-binary systems Cu_2S-SiS_2 and Cu_2SiS_3-PbS and the crystal structure of the new quaternary compound Cu_2PbSiS_4 . *J. Alloys Compds.* 399(1-2), 149-154.

8. Parasyuk, O.V., Fedorchuk, A.O., Kogut, Y.M. et al. (2010) The Ag_2S -ZnS-GeS₂ system: Phase diagram, glass-formation region and crystal structure of Ag_2ZnGeS_4 . J. Alloys Compds. 500(1), 26-29.

9. Kogut, Y., Fedorchuk, A., Zhbankov, O., Romanyuk, Ya., Kityk, I., Piskach, L., Parasyuk, O. (2011). Isothermal section of the Ag₂S–PbS–GeS₂ system at 300 K and the crystal structure of Ag₂PbGeS₄. J. Alloys Compds. 509(11), 4264-4267.

10. Schumer, B.N., Downs, R.T., Domanik, Kenneth J., Andrade, M., Origlieri M.J. (2013). Pirquitasite, Ag₂ZnSnS₄. *Acta Cryst.* 69(2), i8-i9.

11. Zhang, J.-H., Clark, D.J., Weiland, A., Stoyko, S.S., Soo Kim Y., Jang, J.I., Aitken, J.A. (2017). Li₂CdGeSe₄ and Li₂CdSnSe₄: biaxial nonlinear optical materials with strong infrared second-order responses and laser-induced damage thresholds influenced by photoluminescence. *Inorg. Chem. Front.*, 4, 1472-1484.

12. He, J., Guo, Y., Huang, W., Zhang, X., Yao, J., Zhai, T., Huang, F. (2018). Synthesis, Crystal Structure, and Optical Properties of Noncentrosymmetric Na, ZnSnS₄. *Inorg. Chem.* 57(16), 9918-9924.

13. Brik, M.G., Parasyuk, O.V., Myronchuk, G.L., Kityk, I.V. (2014). Specific features of band structure and optical anisotropy of Cu₂CdGeSe₄ quaternary compounds. *Mat. Chem. Phys*, 147, 155-161.

14. Rincón, C., Quintero, M.E., Moreno, P.Ch., Quintero, E., Henao, J.A., Macías, M.A. (2015). Raman spectrum of Cu,CdSnSe₄ stannite structure semiconductor compound. *Superlattices and Microstruct*. 88, 99-103.

15. Kogut, Y., Khyzhun, O.Y., Parasyuk, O.V., Reshak, A.H., Lakshminarayana, G., Kityk, I.V, Piasecki M. (2012). Electronic spectral parameters and IR nonlinear optical features of novel Ag_{0.5}Pb_{1.75}GeS₄ crystal. *J. Crystal Growth*, 354(1), 142-146.

16. Reshak, A.H., Kogut, Y.M., Fedorchuk, A.O., Zamuruyeva, O.V., Myronchuk, G.L., Parasyuk, O.V., Kamarudin, H., Auluck, S., Plucinski, K.J., Bila, J. (2013). Electronic and optical features of the mixed crystals Ag_{0.5}Pb_{1.75}Ge(S_{1-x}Se_x)₄.

J. Mat. Chem. C, 1(31), 4667-4675.

17. Litvinchuk, A.P., Dzhagan, V.M., Yukhymchuk, V.O., Valakh, M.Ya., Babichuk, I.S., Parasyuk, O.V., Piskach, L.V., Gordan, O.D., Zahn, D.R.T. (2014). Electronic structure, optical properties, and lattice dynamics of orthorhombic Cu_2CdGeS_4 and Cu_2CdSiS_4 semiconductors. *Phys. Rev B*. 90(16).

18. Zhang, Y., Sun, X., Zhang, P., Yuan, X., Huang, F., Zhang, W. (2012). Structural properties and quasiparticle band structures of Cu-based quaternary semiconductors for photovoltaic applications. *J. Appl. Phys*, 111(6).

19. Huang, Y., Wu, K., Cheng, J., Zhihua, Y., Pan, Sh. (2019). $\text{Li}_2\text{ZnGeS}_4$: a promising diamond-like infrared nonlinear optical material with high laser damage threshold and outstanding second-harmonic generation response. *Dalton Trans*, 48(14), 4484-4488.

20. Eulenberger, G. (1980). Darstellung und Kristallstruktur des Dithallium(I) blei(II)- tetrathiogermanats(IV) Tl₂PbGeS₄/ Preparation and Crystal Structure of Dithallium(I) Lead(II) Tetrathiogermanate(IV). *Z. Naturforsch*, 35, 335-339.

21. McGuire, M.A., Scheidemantel, Th.J., Badding, J.V., Badding, John V., DiSalvo, F.J. (2005). Tl₂AXTe₄ (A = Cd,

Hg, Mn; X = Ge, Sn): Crystal Structure, Electronic Structure, and Thermoelectric Properties. *Chem. Mater*, 17, 6186-6191. 22. Mozolyuk, M.Yu., Piskach, L.V., Fedorchuk, A.O., Olekseyuk, I.D., Parasyuk, O.V. (2012). Physico-chemical

interaction in the Tl₂Se–HgSe–D^{IV}Se₂ systems (D^{IV} – Si, Sn). *Mater. Res. Bull*, 47, 3830-3834.

23. Mozolyuk, M.Yu., Piskach, L.V., Fedorchuk, A.O., Olekseyuk, I.D., Parasyuk, O.V. (2013). The Tl₂Se-HgSe-GeSe₂ system and the crystal structure of Tl₂HgGeSe₄. *Chem. Met. Alloys*, 6, 55-62.

24. Piskach, L.V., Mozolyuk, M.Yu., Fedorchuk, A.O., Olekseyuk, I.D., Parasyuk O.V. (2017). Phase equilibria in the Tl₂S-HgS-SnS₂ system at 520 K and crystal structure of Tl₂HgSnS₄. *Chem. Met. Alloys*, 10, 136-141.

25. Selezen, A.O., Piskach, L.V., Parasyuk, O.V., Olekseyuk, I.D. (2019). The Tl₂SnSe₃-CdSe System and the Crystal Structure of the Tl₂CdSnSe₄ compound. *J. Phase Equilib. Diffus*, 40, 6, 797-801.

26. Mozolyuk, M.Yu., Piskach, L.V., Fedorchuk, A.O., Parasyuk, O.V., Khyzhun, O.Y. (2017). The Tl₂S–PbS– SiS, system and the crystal and electronic structure of quaternary chalcogenide Tl₂PbSiS₄. Mat. Chem. Phys, 195, 132-142.

27. Tsisar, O., Piskach, L., Babizhetskyi, V., Levytskyi, V., Kotur, B., Marushko, L., Olekseyuk, I., Parasyuk, O. (2018).

Fazovi rivnovahy v systemi Tl₂Se-In₂Se₃-GeSe₂ pry 520 K. [Phase equilibria in the system Tl2Se - In2Se₃ - GeSe₂ at 520 kJ. If a start of the system Tl2Se - In2Se₃ - GeSe₂ at 520 kJ. If a start of the system Tl2Se - In2Se₃ - GeSe₂ at 520 kJ.

520 K]. Visn. Lviv. u-tu. Ser. khimichna. – Bulletin of Lviv University. Chemistry series, 59(10), 46-52 [in Russian].

28. Davydyuk, G.E., Piasecki, M., Parasyuk, O.V., Myronchuk, G.L., Fedorchuk, A.O., Danylchuk, S.P., Piskach, L.V., Mozolyuk, M.Yu., AlZayed N. 2013. *Opt. Mater*, 35(12), 2514-2518.

29. Khyzhun, O.Y., Fedorchuk, A.O., Kityk, I.V., Piasecki, M., Mozolyuk, M.Yu., Piskach, L.V., Parasyuk, O.V., ElNaggar, A.M., Albassam, A.A., Karasinski, P. (2018). Electronic structure and laser induced piezoelectricity of a new quaternary compound TlInGe₃S₈. *Mat. Chem. Phys*, 204, 336-344.

30. Myronchuk, G.L., Zamurueva, O.V., Parasyuk, O.V., Piskach, L.V., Fedorchuk, A.O., AlZayed, N.S., El-Naggar, A.M., Ebothe, J., Lis, M., Kityk, I.V. (2018). Structural and optical properties of novel optoelectronic $Tl_{1-x}In_{1-x}Si_xSe_2$ single crystals. *J. Mat. Sci.: Mat. in Electr*, 25(7), 3226-3232.

31. Myronchuk, G.L., Davydyuk, G.E., Parasyuk, O.V., Khyzhun, O.Y., Andrievski, R.A., Fedorchuk, A.O., Danylchuk, S.P., Piskach, L.V., Mozolyuk, M.Y. (2013). $Tl_{1-x}In_{1-x}Sn_xSe_2$ (x = 0, 0.1, 0.2, 0.25) single-crystalline alloys as promising non-linear optical materials. *J. Mat. Sci.: Mat. in Electr*, 24(9), 3555-3563.

32. Abrykosov, N.Kh., Bankyna, V.F., Poretskaia, L.V. [y dr.]. (1975). *Poluprovodnykovye khalkohenydy y splavy na ykh osnove. [Semiconductor chalcogenides and alloys based on them]*. Moscow: Nauka, 219. [in Russian].

33. Abrykosov, N.Kh., Shelymova, N.Kh. (1975). *Poluprovodnykovye materyaly na osnove soedynenyi AIVBVI [Semiconductor materials based on AIVBVI compounds]* Moscow: Nauka. [in Russian].

34. Glukh, A.S., Sabov, M.Yu., Barchii, I.E., Tsigika, V.V., Sidei V.I. (2009). Formation of ternary compounds in the Tl₂Se-GeSe₂ system. *Inorgan. Mater*, 45, P, 1172-1176.

35. Houenou, P., Eholie, R. (1976). Etude du systeme SnSe,-Tl,Se. Acad. Sci. Paris, 283, 16, 731-733.

36. Lazarev, V.B., Peresh, E.Yu., Starosta, V.Y., Mudryi, V.V. (1985). Fazovye ravnovesyia y svoistva soedynenyi v systemakh Tl₂S(Se)–SnS₂(Se₂). [Phase equilibria and properties of compounds in Tl2S (Se)–SnS2 (Se2) systems]. *Zhurn. neorh. Khymiy – Journal of Inorganic Chemistry*, 30(6), 1502-1506 [in Russian].

37. Mucha, I., Wiglusz, K., Sztuba, Z., Gaweł, W. (2009). Solid–liquid equilibria in the quasi-binary thallium(I) selenide-tin(IV) selenide system. *Comp. Coupl. Phase Diagr. and T U.H. hermochem*, 33, 545–549.

38. Odyn, V.V., Hrynko, V.V., Novoselova, A.V. (1986). P-T-X fazovaia dyahramma systemy CdSe–GeSe. [P-T-X phase diagram of the CdSe – GeSe system]. *Zhurn. neorh. Khimiy – Journal of Inorganic Chemistry*, 31(5), 1274–1277 [in Russian].

39. Stasova, M.M., Vainshtein, B.K. (1958). Elektronohrafycheskoe opredelenie struktury Tl₂Se. [Electron diffraction determination of the Tl2Se structure]. *Krystallohrafiya – Crystallography*, 3(2), 141-147 [in Russian].

40. Dittmar, G., Schafer, H. (1976). Die Kristallstruktur von germanium diselenid. Acta Cryst. B, 32, 2726-2728.

41. Busch, G., Frohlich, C., Hulliger, F., Steimeier, E. Structur, elektrische und thermoelektrische Eigenschaften von SnSe, *Helv. Phys. Acta.* 34. P. 359-368.

42. Glukh O. S., Sabov M. Yu., Barchij I. E., Pavlyuk V. V., Marciniak B. (1961). Crystal structure of the Tl₄GeSe₄ ternary compound. *Chem. Met. Alloys*, 2009 (2), 10-14.

43. Eulenberger, G. (1982). Ternäre Thalliumchalkogenide mit Tl₄Ge₂S₆-Struktur. Monatsh. Chem, 113, 859-867.

44. Eulenberger, G. (1981). Tl₄Ge₄Se₁₀, ein Thallium(1)selenogermanat mit adamantananalogem Anion $[Ge_4Se_{10}]^{4/7}$ Tl₄Ge₄Se₁₀, a Thallium(I) Selenogermanate with the Adamantane-Like Anion $[Ge_4Se_{10}]^{4/7}$. *Z. Naturforsch*, 36, 521-523.

45. Akinocho, G., Houenou, P., Oyetola, S., Eholie, R., Jumas, J.C., Olivier-Fourcade, J., Maurin, M. (1991). Étude structurale de Tl₄SnSe₄ J. Solid State Chem, 93(2), 336-340.

46. Jaulmes, S., Houenou, P. (1980). Structure cristalline du seleniure d'etain(IV) et de thallium(I): Tl₂SnSe₃. *Mater. Res. Bull*, 15(7), 911-915.

47. Henao, J.A., Delgado, J.M., Quintero, M. (1998). X-ray powder diffraction data and structural study of Fe₂GeSe₄. *Powder Diffr*, 13(4), 202-209.

48. Akselrud, L.G., Zavalii, P.Yu., Grin, Yu. et al., J. (2014). *WinCSD*: software package for crystallographic calculations (Version 4), 47, 803-805.

49. Ketelaar, J.A., t'Hart, W.H., Moerel, M., Polder D. (1939). The Crystal Structure of TlSe, Thallous Thallic or Thallosic Selenide. Z. Kristallog, A, 101, 396-404.

50. D. Müller, G. Eulenberger, H. Hahn (1973) Über ternäre Thalliumchalkogenide mit Thalliumselenidstruktur. Z. Anorg. Allg. Chem, 398, 207–220.