УДК 546.548.232.6:546.[657+571+289]'23 DOI https://doi.org/10.32782/pcsd-2024-3-3

Назарій БЛАШКО

старший лаборант кафедри неорганічної та фізичної хімії, Волинський національний університет імені Лесі Українки, пр. Волі, 13, м. Луцьк, Волинська обл., Україна, 43025 **ORCID:** 0000-0001-6484-3283

Олег МАРЧУК

кандидат хімічних наук, доцент, доцент кафедри неорганічної та фізичної хімії, Волинський національний університет імені Лесі Українки, пр. Волі, 13, м. Луцьк, Волинська обл., Україна, 43025 **ORCID:** 0000-0002-5618-7156

Бібліографічний опис статті: Блашко, Н., Марчук, О. (2024). Кристалічна структура халькогенідів $Nd_3Ag_{4x}Ge_{1.25-x}Se_7(x = 0.05; 0.10; 0.15)$. Проблеми хімії та сталого розвитку, 3, 19–25, doi: https://doi.org/10.32782/pcsd-2024-3-3

КРИСТАЛІЧНА СТРУКТУРА ХАЛЬКОГЕНІДІВ $ND_{3}AG_{4x}GE_{1.25,x}SE_{7}(X = 0.05; 0.10; 0.15)$

Три зразки стехіометричних складів $Nd_3Ag_{0.2}Ge_{1.2}Se_7$, $Nd_3Ag_{0.40}Ge_{1.15}Se_7$ і $Nd_3Ag_{0.60}Ge_{1.10}Se_7$, масою один грам кожен, отримані спіканням елементарних високочистих компонентів у вакуумованих кварцевих ампулах $(1.33 \cdot 10^{-2} \Pi a)$ за максимальної температури синтезу 1150 °С. Кристалічна структура селенідів Nd₃Ag₄, Ge_{125-x}Se₇ $\begin{array}{l} (x=0.05;\ 0.10;\ 0.15):\ Nd_{3}Ag_{0.2}Ge_{1.2}Se_{7}\ (a=10.5661(1)\ \text{Å},\ c=6.0381(7)\ \text{Å},\ R_{1}=0.0811,\ R_{p}=0.1978),\ Nd_{3}Ag_{0.4}Ge_{1.15}Se_{7}\ (a=10.5863(4)\ \text{Å},\ c=6.0359(4)\ \text{\AA},\ R_{1}=0.0883,\ R_{p}=0.2017)\ \text{ma}\ Nd_{3}Ag_{0.6}Ge_{1.1}Se_{7}\ (a=10.6045(6)\ \text{\AA},\ c=6.0446(5)\ \text{\AA},\ R_{1}=0.0880,\ R_{p}=0.1904)\ \text{вивчена}\ permitting between the second method metho$ турного типу La₃CuSiS₇ (ПГ P6₃; СП hP24). У їх структурі атоми неодиму розташовані в ПСТ 6с (х у z) і разом з атомами селену формують тригональні призми з двома додатковими атомами [Nd Se,4Se,3Se,] (KY = 8). Атоми статистичних сумішей R1 (0.20 Ge + 0.20 Ag), R2 (0.15 Ge + 0.40 Ag) та R3 (0.10 Ge + 0.60 Åg), що займають ПСТ 2a (0 0 z) розташовані практично на одній з граней октаедра [R(Ag+Ge) 6Se]. За рахунок цього ці атоми лежать в площині трикутників [M 3Se₂]. Атоми Ge, що локалізовані в ПСТ 2b (1/3 2/3 z) мають тетраедричне оточення [Ge Se,3Se,] з атомів селену. Селен в кристалічній гратці має три атомні позиції: Se1(ПСТ 2b), Se2 та Se3 (ПСТ 6с). На елементарну комірку припадає дві формульні одиниці Nd₃Ag_{4x}Ge_{1.25-x}Se₇. Тригональні призми [Nd 8Se] з'єднанні маж собою ребрами і формують "блоки" (по три призми в кожному). Октаедри [R(Ag+Ge) 6Se] мають спільні грані і утворюють "колони" в напрямку головної осі. Тригональні призми з октаедрами утворюють спільні грані. Тетраедри [Ge 4Se] є ізольовані один від одного. При збільшенні вмісту артентуму спостерігається збільшення параметрів елементарної комірки за рахунок розмірного фактору. Германійвмісні селеніди Nd₃Ag₄,Ge₁₂₅,Se₇(x = 0.05; 0.10; 0.15) на основі неодиму є перспективними халькогенідними фазами на основі яких можуть бути створені матеріали для нелінійної оптики. За рахунок наявності в структурі рідкісноземельних елементів матеріали на основі таких селенідів можуть прогнозовано володіти слабкими парамагнітними властивостями.

Ключові слова: рідкісноземельні метали, халькогеніди, кристалічна структура, рентгенівський метод порошку.

Nazarii BLASHKO

Senior Laboratory Assistant at the Department of Inorganic and Physical Chemistry, Lesya Ukrainka Volyn National University, 13 Voli ave., Lutsk, Volyn region, Ukraine, 43025 **ORCID:** 0000-0001-6484-3283

Oleg MARCHUK

PhD in Chemistry, Associate Professor, Senior Lecturer at the Department of Inorganic and Physical Chemistry, Lesya Ukrainka Volyn National University, 13 Voli ave., Lutsk, Volyn region, Ukraine, 43025 **ORCID:** 0000-0002-5618-7156

To cite this article: Blashko, N., Marchuk, O. (2024). Krystalichna struktura khalkohenidiv $Nd_3Ag_{4x}Ge_{1.25-x}Se_7$ (x = 0.05; 0.10; 0.15) [Crystal structure of $Nd_3Ag_{4x}Ge_{1.25-x}Se_7$ (x = 0.05; 0.10; 0.15) chalcogenides]. *Problems of Chemistry and Sustainable Development*, 3, 19–25, doi: https://doi.org/10.32782/pcsd-2024-3-3

CRYSTAL STRUCTURE OF ND₃AG_{4x}GE_{1.25-x}SE₇ (X = 0.05; 0.10; 0.15) CHALCOGENIDES

Three samples of stoichiometric compositions $Nd_{4}Ag_{0.2}Ge_{1.2}Se_{7}$, $Nd_{3}Ag_{0.40}Ge_{1.15}Se_{7}$ is $Nd_{3}Ag_{0.60}Ge_{1.10}Se_{7}$ weighing one gram each, were obtained by sintering elementary high-purity in vacuumed quartz ampoules $(1.33 \cdot 10^{-2} Pa)$ at a maximum synthesis temperature 1150 °C. Crystal structure of $Nd_{3}Ag_{4}Ge_{1.25}Se_{7}$ selenides (x = 0.05; 0.10; 0.15): $Nd_{3}Ag_{0.5}Ge_{1.5}Se_{7}$ (a = 10.5661(1), A, c = 6.0381(7), $A, R_{1} = 0.0811$, $R_{p} = 0.1978$), $Nd_{4}Ag_{0.4}Ge_{1.15}Se_{7}$ (a = 10.5863(4), A, c = 6.0359(4), $A, R_{1} = 0.0883$, $R_{p} = 0.2017$) and $Nd_{4}Ag_{0.6}Ge_{1.1}Se_{7}$ (a = 10.6045(6), A, c = 6.0446(5), $A, R_{1} = 0.0880$, $R_{p} = 0.1904$) was studied by X-ray powder method. The studied structures relate to the structural type La₃CuSiS₇ (SG P6₃; PS hP24). In their structure, Neodymium atoms are located in the site 6 (x y z) and, together with selenium atoms, form trigonal prisms with two additional atoms [Nd Se_{1}4Se_{3}Se_{3}] (CN = 8). Atoms of statistical mixtures RI (0.20 Ge + 0.20 Ag), R2 (0.15 Ge + 0.40 Ag) and R3 (0.10 Ge + 0.60 Ag) occupying the site 2a (0 0 z) are located practically on one of the faces of the octahedron [R(Ag +Ge) 6Se]. Due to this, these atoms lie in the plane of triangles [M 3Se2]. Ge atoms localized in the site 2b (1/3 2/3 z) have a tetrahedral environment [Ge Se_{1}3Se_{3}] of selenium atoms. Selenium in the crystal lattice has three atomic positions: Se1 (site 2b), Se2 and Se3 (site 6c). There are two formula units of Nd_{4}Ag_{4}Ge_{1.5}Se_{7}Per unit cell. Trigonal prisms [Nd 8Se] are connected by edges and form "blocks" (three prisms in each). Octahedra [R(Ag+Ge) 6Se] have common faces and form "columns" in the direction of the main axis. Trigonal prisms with octahedra form common faces. [Ge 4Se] tetrahedra are isolated from each other. When the content of argentum increases, the unit cell parameters increase due to the size factor. Germanium-containing selenides Nd_{4}Ag_{4}Ge_{1.25

Актуальність проблеми та аналіз останніх досліджень і публікацій. Серед наукових напрямів сучасного матеріалознавства є пошук багатофункціональних матеріалів які не мають у своєму складі токсичних елементів. Значний інтерес для дослідження мають тетрарні катіон дефектні халькогеніди на основі РЗМ (Gulay, 2008; Смітюх, 2017; Daszkiewicz, 2018; Блашко, 2022). Особливістю цих структур є велике координаційне число атомів РЗМ, поліедри якого займають більшу частину атомного простору елементарної комірки. Атоми статистичної суміші R(Ag + Ge) розташовані в середині трикутників [R 3Se], які знаходяться на протилежних гранях октаедра [R 6Se]. Атоми Ge мають тетраедричне оточення. Оскільки такі халькогеніди кристалізуються в ПГ $P6_3$, що немає центру симетрії, вони прогнозовано можуть генерувати широкий спектр властивостей (Mei, 2012; Yin, 2012; Shi, 2015; Feng, 2014; Hao, 2014; Zhang, 2014; Kabanov, 2024).

Мета дослідження. Метою дослідження є вивчення кристалічної структури селенідів $Nd_3Ag_{4x}Ge_{1.25-x}Se_7$ (x = 0.05; 0.10; 0.15), як перспективних матеріалів для нелінійної оптики.

Експериментальна частина. Три зразки стехіометричних складів $Nd_3A_{g_{0.20}}Ge_{1.20}S_{e_7}$, $Nd_3Ag_{0.40}Ge_{1.15}Se_7$ і $Nd_3Ag_{0.60}Ge_{1.10}Se_7$ готувались сплавлянням простих речовин Nd, Ag, Ge, Se високого ступеня чистоти у вакуумованих, до залишкового тиску (1.33·10-2 Па) кварцових ампулах. Загальна маса наважки для кожного

сплаву становила 1.0 г. Сплавляння здійснювали в електричній муфельній печі з програмним управлінням технологічними процесами МП-30 згідно технологічного режиму: нагрів до температури 1150 °С із швидкістю 12 °С/год; витримка за температури 1150 °C протягом чотирьох годин; охолодження до температури 500 °С із швидкістю 12 °С/год; гомогенізуючий відпал за температури 500 °С протягом двох місяців; гартування у воду кімнатної температури без розвакуумування. Кристалічну структуру синтезованих селенідів вивчали реттенівським методом порошку. Експериментальні дифрактограми зразків були отримані на рентгенівському дифрактометрі ДРОН4-13 [СиКа-випромінювання ($\lambda = 1.54185$ Å), $10^{\circ} \le 2\Theta \le 100^{\circ}$ крок сканування – 0.05 °, експозиція у кожній точці – 10 с]. Розрахунок кристалічної структури проведено методом Рітвельда [пакет програм WinCSD 4.19 (Grin, 2014)]. Для візуалізації структури використовували програму VESTA 3.5.7 (Momma, 2011).

Результати та їх обговорення. Кристалічна структура селенідів $Nd_3Ag_{4x}Ge_{1.25\cdot x}Se_7$ (x = 0.05; 0.10; 0.15) вивчена методами рентгенівської порошкової дифрактометрії. Дифрактограми досліджених зразків проіндесовані у гексагональній сингонії (СП *hP*24, ПГ *P*6₃). Умови рентгенівського експерименту та кристалографічні параметри представлені в таблиці 1. Аналіз індексів *hkl* та їх інтенсивностей вказав на приналежність структур синтезованих халькогенідів до структурного типу La₃CuSiS₇ (Guittard, 1972). Уточнення координат та ізотропних параметрів теплових коливань атомів (таблиця 2) у цій моделі призводить до задовільних значень факторів добротності. Спостережувані, розраховані та різницеві між ними дифрактограми селенідів Nd₃Ag_{0.20}Ge_{1.20}Se₇ (A), Nd₃Ag_{0.40}Ge_{1.15}Se₇ (Б) і Nd₃Ag_{0.60}Ge_{1.10}Se₇ (B) при цих параметрах атомів, наведені на рис. 1.

Координаційні поліедри [Nd 8Se], [Ge 4Se] і [R 3Se] та їх укладку у структурі селенідів зображено на рис. 2 (Г-Д).

Селеніди складу $Nd_3Ag_{4x}Ge_{1.25-x}Se_7$ (x = 0.05; 0.10; 0.15) синтезовані на основі сполуки $Nd_3Ge_{1.5}Se_7$ (Guittard, 1970) шляхом часткового заміщення атомів германію в ПСТ 2*a* атомами одновалентного арґентуму. У структурах цих фаз атоми неодиму заселяють одну ПСТ 6*c* (*x y z*) і координують навколо себе вісім атомів селену, формуючи тригональні призми з двома додатковими атомами [Nd 8Se]. Ці призми між собою утворюють спільні вершини і ребра. Статистична суміш атомів R (Ag + Ge) локалізована в ПСТ 2*a* (0 0 *z*). Склад цієї суміші:

Рис. 1. Спостережувані, розраховані та різницеві між ними дифрактограми селенідів: Nd₃Ag_{0.2}Ge_{1.2}Se₇ (A), Nd₃Ag_{0.4}Ge_{1.15}Se₇ (Б) та Nd₃Ag_{0.6}Ge_{1.1}Se₇ (B)

Таблиця 1

селенідів $Nd_3Ag_{4x}Ge_{1.25-x}Se_7$ (x = 0.05; 0.10; 0.15) Параметри Nd₃Ag_{0.20}Ge_{1.20}Se₇ Nd₃Ag_{0.40}Ge_{1.15}Se₇ Nd₃Ag_{0.60}Ge_{1.10}Se₇ Просторова група та її номер *P*6, (173) $P6_{3}(173)$ *P*6, (173) Символ Пірсона hP22.8 hP23.1 hP23.6 a, (Å) 10.5661(1) 10.5863(4) 10.6045(4) c, (Å) 6.0447(3) 6.0381(7) 6.0359(4) Об'єм комірки (Å 3) 583.8(2) 585.82(8) 588.68(7) Кількість атомів в комірці 22.8 23.1 23.6 Густина (обрахована) (г/см3) 6.224(2) 6.3041(8) 6.4155(8) Абсорбційний коефіцієнт (1/см) 1272.26 1292.88 1314.66 Випромінювання і довжина Cu 1.54185 хвилі (Å) ДРОН 4-13 Дифрактометр

Повнопрофільний

WinCSD

6

2

100.00; 0.497

0.0883/0.2017

0.4367(2)

[1 3 4] 1.62(0)

Спосіб обрахунку

Фактор шкали

2Q

Програма для обрахунку

Кількість атомних позицій

Кількість вільних параметрів

Фактори достовірності R_{I}/R_{p}

Вісь текстури та його параметр

Умови проведення експерименту та результати уточнення кристалічної структури

Таблиця 2

6

2

100.00; 0.497

0.0883/0.1908

0.4810(2)

[1 3 0] 0.82(0)

Координати та ізотропні параметри теплового коливання атомів у структурі селенідів Nd₂Ag₄, Ge_{1,25}, Se₇ (x = 0.05; 0.10; 0.15)

6

2

100.05; 0.497

0.0811/0.1978

0.36341(6)

[1 3 4] 1.70(5)

Атом	ПСТ	x/a	y/b	z/c	B _{in} r		
Nd ₃ Ag _{0.2} Ge _{1.2} Se ₇							
Nd	6 <i>c</i>	0.1299(3)	0.3595(3)	0.077(2)	0.44(7)		
Ge	2b	1/3	2/3	0.660(3)	1.5(4)		
R1	2 <i>a</i>	0	0	0.00000 *	0.7(8)		
Se1	2b	1/3	2/3	0.269(3)	1.0(4)		
Se2	6 <i>c</i>	0.2598(5)	0.1724(6)	0.053(2)	1.0(2)		
Se3	6 <i>c</i>	0.5146(6)	0.0933(5)	0.3165(15)	0.4(2)		
R1 - 0.200 Ag + 0.200 Ge							
$Nd_3Ag_{0.4}Ge_{1.15}Se_7$							
Nd	6 <i>c</i>	0.1284(4)	0.3565(3)	0.0707(15)	0.59(7)		
Ge	2b	1/3	2/3	0.656(3)	0.7(4)		
R2	2 <i>a</i>	0	0	0.00000*	1.5(6)		
Se1	2b	1/3	2/3	0.272(3)	1.3(4)		
Se2	6 <i>c</i>	0.2650(6)	0.1693(7)	0.060(2)	1.2(2)		
Se3	6 <i>c</i>	0.5189(7)	0.1002(7)	0.3154(15)	0.6(2)		
R2 – 0.400 Ag + 0.150 Ge							
$Nd_{3}Ag_{0.6}Ge_{1.1}Se_{7}$							
Nd	6 <i>c</i>	0.1286(3)	0.3573(3)	0.0744(13)	0.32(7)		
Ge	2b	1/3	2/3	0.655(2)	1.1(4)		
R3	2 <i>a</i>	0	0	0.00000*	1.6(4)		
Se1	2b	1/3	2/3	0.271(3)	0.9(4)		
Se2	6 <i>c</i>	0.2690(6)	0.1701(7)	0.058(2)	0.8(2)		
Se3	6 <i>c</i>	0.5190(7)	0.1017(7)	0.3140(14)	0.2(2)		
R3 - 0.600 Ag + 0.100 Ge							
* – зафіксовано							

50 % Ag i 50 % Ge (для Nd₃Ag_{0.20}Ge_{1.20}Se₇), 73 % Ag i 27 % Ge (для Nd₃Ag_{0.40}Ge_{1.15}Se₇) та 86 % Ag i 14 % Ge (для Nd₃Ag_{0.60}Ge_{1.10}Se₇).

Рис. 2. Укладка (Г) та координаційні поліедри (Д) для Nd, Ge та R(Ag+Ge) у структурі синтезованих селенідів

Атоми R (Ag + Ge) розташовані практично на одній з граней октаедра [R (Ag + Ge) 6Se]. За рахунок цього ці атоми лежать в площині трикутників [М 3Se]. У структурі селенідів атоми германію заселяють ПСТ 2b (1/3 2/3 z) і координують навколо себе чотири атоми селену, утворюючи високосиметричні тетраедри [Ge 4Se], які є ізольовані один від одного. При збільшені вмісту арґентуму параметри комірки прогнозовано збільшуються. Параметр а від 10.5661(1) до 10.6045(4) Å; параметр с від 6.0381(7) до 6.0447(3) Å; параметр с від 583.8(2) до 588.68(7) Å3. Тригональні призми [КЧеф.=7.63-7.99 (у=0.02542-0.02352)] та тетраедри [КЧ_{еф} = 3.98-3.99 (χ = 0.00968-0.00598)] стають більш симетричні.

Середнядовжиназв'язківб(Nd–Se)таб(R–Se) збільшується, а б(Ge – Se) – зменшується. Розраховані величини середніх довжин зв'язків добре узгоджуються з сумами відповідних йонних радіусів [Shannon, 1976; Wiberg, 2007]. Параметри поліедрів у структурах синтезованих селенідів подано в таблиці 3.

Висновки і перспективи подальших досліджень. Вперше синтезовано, рентгенівським методом порошку вивчено та проаналізовано кристалічну структуру нових тетрарних селенідів Nd₃Ag₄, Ge₁₂₅, Se₇ (x = 0.05; 0.10; 0.15).

На основі аналізу масиву експериментально отриманих результатів встановлено, що ці халькогеніди кристалізуються у гексагональній сингонії (СТ La₃CuSiS₇, ПГ *P*6₃) з параметрами елементарної комірки: a = 10.5661(1) Å, c = 6.0381(7) Å та V = 583.8(2) Å³, $R_I = 0.0811$, $R_p = 0.1978$ (для Nd₃Ag_{0.20}Ge_{1.20}Se₇); a = 10.5863(4) Å, c = 6.0359(4) Å та V = 585.82(8) Å³, $R_I = 0.0833$, $R_p = 0.2017$ (для Nd₃Ag_{0.40}Ge_{1.15}Se₇) та a = 10.6045(4) Å, c = 6.0447(3) Å та V = 588.68(7) Å³, $R_I = 0.0883$, $R_p = 0.1908$ (для Nd₃Ag_{0.60}Ge_{1.10}Se₇).

В подальших дослідженнях планується дослідження фізичних властивостей синтезованих халькогенідів (оптичних, електричних, магнітних, тощо).

Таблиця 3

Параметри	$Nd_{3}Ag_{0,20}Ge_{1,20}Se_{7}$	Nd ₃ Ag _{0.40} Ge _{1.15} Se ₇	$Nd_{3}Ag_{0.60}Ge_{1.10}Se_{7}$			
Тригональні призми [Nd 8Se]						
$\delta(\text{Nd-Se})_{\text{MiH}} - \delta(\text{Nd-Se})_{\text{Make}}, \text{Å}$	2.920(9) -3.300(17)	2.973(12) - 3.199(17)	2.9686(8) -3.2287(12)			
Середня довжина зв'язку δ(Nd – Se) _{cen} , Å	3.0685	3.0737	3.0796			
Об'єм поліедра, Å ³	50.1301	50.4232	50.6884			
Коефіцієнт дисторції (χ)	0.02542	0.02396	0.02352			
КЧ _{еф}	7.63	7.76	7.76			
Тетраедри [Ge 4Se]						
$\delta(\text{Ge-Se})_{\text{MiH}} - \delta(\text{Ge-Se})_{\text{Make}}, \text{\AA}$	2.35(3) -2.417(10)	2.32(3) -2.369(11)	2.321(3) - 2.3586(8)			
Середня довжина зв'язку, δ(Ge – Se) _{cen} , Å	2.4013	2.3565	2.3493			
Об'єм поліедра, Å ³	7.0684	6.6564	6.5937			
Коефіцієнт дисторції (χ)	0.00968	0.00823	0.00598			
\angle Se1 – Ge – Se3, (°)	113.1(5)	114.1(5)	114.05(3)			
\angle Se3 – Ge – Se3, (°)	105.6(6)	104.5(6)	104.53(3)			
KY _{ch}	3.98	3.99	3.99			
Моноедри [R(Ag+Ga) 3Se]						
δ(R-Se), Å	2.439(6)	2.485(6)	2.5236(6)			
КЧ _{еф}	3.00	3.00	3.00			
$\delta(\mathrm{Nd}-\mathrm{Se})_{\mathrm{cep}}=0,125^{*}\mathrm{e}$						
$\delta(\text{Ge} - \text{Se})_{\text{res}} = 0.25*[3*\dot{\delta}(\text{Ge} - \text{Se}3) + \delta(\text{Ge} - \text{Se}1)];$						

Параметри поліедрів у структурах Nd₃Ag₄, Ge₁₂₅, Se₇ (x = 0.05; 0.10; 0.15)

ЛІТЕРАТУРА:

1. Gulay L., Lychmanyuk O. Crystal structure of the $R_3Si_{1.25}Se_7$ (R = Pr, Nd and Sm) compounds. J. Alloys Compd. 2008. 458. P. 174–177. https://doi.org/10.1016/j.jallcom.2007.03.127

2. Смітюх О., Марчук О., Олексеюк І., Федорчук А. Кристалічна структура сполук Er_{1.5}La(Pr)_{1.5}Si_{1.67}Se₇. *Вісн. Ужгор. нац. ун-ту. Серія «Хімія».* 2017. 1(37). С. 44–47.

3. Daszkiewicz M., Smitiukh O., Marchuk O., Gulay L. The crystal structure of $\text{Er}_{2.34}\text{La}_{0.66}\text{Ge}_{1.28}\text{S}_7$ and the $\text{La}_x\text{R}_y\text{Ge}_3\text{S}_{12}$ phases (R – Tb, Dy, Ho and Er). J. Alloys Compd. 2018. 738. P. 263–269. https://doi.org/10.1016/j.jallcom.2017.12.207

4. Блашко Н., Марчук О., Смітюх О., Федорчук А. Кристалічна структура $Pr_3Ag_{4x}Ge_{1.25-x}Se_7(x=0.10; 0.15)$. Вісн. Одеського ун-ту. Серія «Хімія». 2022. 27. 3(83). С. 27–35. https://doi.org/10.18524/2304-0947.2022.3(83).268609

5. Mei D., Yin W., Feng K., Lin Z., Bai L., Yao J., Wu Y. LiGaGe₂Se₆: A New IR Nonlinear Optical Material with Low Melting Point. *Inorganic Chem.* 2012. 51(2). P. 1035–1040. https://doi.org/10.1021/ic202202j

6. Yin W., Feng K., Hao W., Yao J., Wu Y. Syntheses, structures, and optical properties of Ba_4MInSe_6 (M = Cu, Ag). J. Solid State Chem. 2012. 192. P. 168–171. https://doi.org/10.1016/j.jssc.2012.03.068

7. Feng K., Zhang X., Yin W., Shi Y., Yao J., Wu Y. New Quaternary Rare-Earth Chalcogenides $BaLnSn_2Q_6$ (Ln = Ce, Pr, Nd, Q = S; Ln = Ce, Q = Se): Synthesis, Structure, and Magnetic Properties. *Inorganic Chem.* 2014. 53(4). P. 2248–2253. https://doi.org/10.1021/ic402934m

8. Hao W., Han Y., Huang R., Feng K, Yin W., Yao J., Wu Y. Ag_{1.75}InSb_{5.75}Se₁₁: A new noncentrosymmetric compound with congruent-melting behavior. *J. Solid State Chem.* 2014. 218. P. 196–201. https://doi.org/10.1016/j.jssc.2014.06.026

9. Zhang X., Chen W., Mei D., Zheng C., Liao F., Li Y., Lin J., Huang F. Synthesis, structure, magnetic and photo response properties of La₂CuGaSe₇. J. Alloys Comp. 2014. 610. P. 671–675. https://doi.org/10.1016/j.jallcom.2014.05.086

10. Shi Y., Chen Y., Chen M., Wu L., Lin H., Zhou L., Chen L. Strongest Second Harmonic Generation in the Polar R₃MTQ₇ Family: Atomic Distribution Induced Nonlinear Optical Cooperation. *Chem. Mat.* 2015. 27(5). P. 1876–1884. https://doi.org/10.1021/acs.chemmater.5b00177

11. Kabanov A., Morkhova Y., Osipov V., Rothenberger M., Leisegang T., Blatov V. A novel class of multivalent ionic conductors with the La₃CuSiS₇ structure type: results of stepwise ICSD screening. *Phys. Chem. Chem. Phys.* 2024. 26(3). P. 2622–2628. https://doi.org/10.1039/D3CP04510B

12. Grin Y., Akselrud L. WinCSD: Software package for crystallographic calculations (Version 4). J. Appl. Cryst. 2014. 47(2). P. 803–805. https://doi:10.1107/s1600576714001058

13. Momma, K., Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst. 2011. 44(6). P. 1272–1276. https://doi:10.1107/S0021889811038970

14. Guittard M., Julien-Pouzol M. Les composes hexagonaux de type La₃CuSiS₇. *Bull. Soc. Chim. Fr.* 1972. 3. P. 2207–2209.

15. Guittard M., Julien-Pouzol M. Les composes hexagonaux de type La₃CuSiS₇. Bull. Soc. Chim. Fr. 1970. 7. P. 2467–2469.

16. Shannon R. Revised effective ionic radii and systematic studied of interatomic distances in halides and chalcogenides. *Acta Cryst.* 1976. 39. P. 751–767. https://doi.org/10.1107/S0567739476001551

17. Wiberg N, Wiberg E, Holleman A. Lehrbuch der Anorganischen Chemie. Walter de Gruyter. 102. Auflage, 2007. P. 2003–2004.

REFERENCES:

1. Gulay, L., & Lychmanyuk, O. (2008). Crystal structure of the $R_3Si_{1.25}Se_7$ (R = Pr, Nd and Sm) compounds. J. Alloys Compd., 458, 174–177. https://doi.org/10.1016/j.jallcom.2007.03.127

2. Smitiukh, O., Marchuk, O., Olekseyuk, I., & Fedorchuk, A. (2017). Krystalichna struktura spoluk $\text{Er}_{1.5}\text{La}(\text{Pr})_{1.5}\text{Si}_{1.67}\text{Se}_7$ [Crystal structure of $\text{Er}_{1.5}\text{La}(\text{Pr})_{1.5}\text{Si}_{1.67}\text{Se}_7$ compounds]. *Visn. Uzhhor. nats. u-tu. Ser. Khimiya – Uzhgorod Nat.* Univ. Bull. Chemistry Series, 1(37), 44–47 [in Ukrainian].

3. Daszkiewicz, M., Smitiukh, O., Marchuk, O., & Gulay, L. (2018). The crystal structure of $\text{Er}_{2.34}\text{La}_{0.66}\text{Ge}_{1.28}\text{S}_7$ and the $\text{La}_x \text{R}_y \text{Ge}_3 \text{S}_{12}$ phases (R – Tb, Dy, Ho and Er). J. Alloys Compd., 738, 263–269. https://doi.org/10.1016/j.jallcom.2017.12.207

4. Blashko, N., Marchuk, O., Smitiukh, O., & Fedorchuk, A. (2022). Krystalichnastruktura $Pr_3Ag_{4x}Ge_{1.25-x}Se_7(x=0.10; 0.15)$ [Crystal structure of $Pr_3Ag_{4x}Ge_{1.25-x}Se_7(x = 0.10; 0.15)$]. *Visn. Odes. nats. u-tu. Ser. Khimiya – Odessa Nat.* Univ. Bull. Chemistry Series, 3(83), 27–35 [in Ukrainian]. https://doi.org/10.18524/2304-0947.2022.3(83).268609

5. Mei, D., Yin, W., Feng, K., Lin, Z., Bai, L., Yao, J., & Wu, Y. (2012). LiGaGe₂Se₆: A New IR Nonlinear Optical Material with Low Melting Point. *Inorganic Chem.* 51(2). P.1035–1040. https://doi.org/10.1021/ic202202j

6. Yin, W., Feng, K., Hao, W., Yao, J., & Wu, Y. (2012). Syntheses, structures, and optical properties of Ba₄MInSe₆ (M = Cu, Ag). J. Solid State Chem. 192. P.168–171. https://doi.org/10.1016/j.jssc.2012.03.068

7. Feng, K., Zhang, X., Yin, W., Shi, Y., Yao, J., & Wu, Y. (2014). New Quaternary Rare-Earth Chalcogenides $BaLnSn_2Q_6$ (Ln = Ce, Pr, Nd, Q = S; Ln = Ce, Q = Se): Synthesis, Structure, and Magnetic Properties. *Inorganic Chem.* 53(4). P.2248–2253. https://doi.org/10.1021/ic402934m

8. Hao, W., Han, Y., Huang, R., Feng, K, Yin, W., Yao, J., & Wu, Y. (2014). Ag_{1.75}InSb_{5.75}Se₁₁: A new noncentrosymmetric compound with congruent-melting behavior. *J. Solid State Chem.* 218. P. 196–201. https://doi.org/10.1016/j. jssc.2014.06.026

9. Zhang, X., Chen, W., Mei, D., Zheng, C., Liao, F., Li, Y., Lin, J., & Huang, F. (2014). Synthesis, structure, magnetic and photo response properties of La, CuGaSe, J. Alloys Comp. 610. P. 671–675. https://doi.org/10.1016/j.jallcom.2014.05.086

10. Shi, Y., Chen, Y., Chen, M., Wu, L., Lin, H., Zhou, L., & Chen, L. (2015). Strongest Second Harmonic Generation in the Polar R₃MTQ₇ Family: Atomic Distribution Induced Nonlinear Optical Cooperation. *Chem. Mat.* 27(5). P. 1876–1884. https://doi.org/10.1021/acs.chemmater.5b00177

11. Kabanov, A., Morkhova, Y., Osipov, V., Rothenberger, M., Leisegang, T., Blatov, V. (2024). A novel class of multivalent ionic conductors with the La₃CuSiS₇ structure type: results of stepwise ICSD screening. *Phys. Chem. Chem. Phys.* 26(3). P. 2622–2628. https://doi.org/10.1039/D3CP04510B

12. Grin, Y., & Akselrud, L. (2014). WinCSD: Software package for crystallographic calculations (Version 4). *J. Appl. Cryst.* 47(2). P. 803–805. https://doi:10.1107/s1600576714001058

13. Momma, K., & Izumi, F. (2011). VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst. 44(6). P. 1272–1276. https://doi:10.1107/S0021889811038970

14. Guittard, M., & Julien-Pouzol, M. (1972). Les composes hexagonaux de type La₃CuSiS₇. *Bull. Soc. Chim. Fr.* 3. P. 2207–2209.

15. Guittard, M., & Julien-Pouzol, M. (1970). Les composes hexagonaux de type La_3CuSiS_7 . Bull. Soc. Chim. Fr. 7. P. 2467–2469.

16. Shannon, R. (1976). Revised effective ionic radii and systematic studied of interatomic distances in halides and chalcogenides. *Acta Cryst*. 39. P.751–767. https://doi.org/10.1107/S0567739476001551

17. Wiberg, N., Wiberg, E., & Holleman, A. (2007). Lehrbuch der Anorganischen Chemie. Walter de Gruyter. 102. Auflage, P.2003–2004.