УДК 544.344:546.[68+81]'23 DOI https://doi.org/10.32782/pcsd-2021-2-8

Оксана ЦІСАР

кандидат хімічних наук, завідувач відділення харчових технологій, Волинський фаховий коледж національного університету харчових технологій, вул. Кафедральна, 6, м. Луцьк, Україна, 43016

Іван ОЛЕКСЕЮК

доктор хімічних наук, професор, професор кафедри хімії та технологій Волинський національний університет імені Лесі Українки, просп. Волі, 13, м. Луцьк, Волинська обл., Україна, 43025 **ORCID:** 0000-0001-7206-4351

Лариса МАРУШКО

кандидат хімічних наук, доцент, доцент кафедри органічної хімії та фармації, Волинський національний університет імені Лесі Українки, просп. Волі, 13, м. Луцьк, Волинська обл., Україна, 43025 ORCID: 0000-0002-8373-6747

Елла КАДИКАЛО

кандидат хімічних наук, доцент кафедри органічної хімії та фармації, Волинський національний університет імені Лесі Українки, просп. Волі, 13, м. Луцьк, Волинська обл., Україна, 43025 **ORCID:** 0000-0002-5613-1662

Людмила ПІСКАЧ

кандидат хімічних наук, професор, професор кафедри хімії та технологій, Волинський національний університет імені Лесі Українки, просп. Волі, 13, м. Луцьк, Волинська обл., Україна, 43025 **ORCID:** 0000-0003-3117-4006

Бібліографічний опис статті: Цісар, О., Олексеюк, І., Марушко, Л., Кадикало, Е., Піскач, Л. (2021). Взаємодія у системах Tl₂Se–Ga(In)₂Se₃–SnSe₂. *Проблеми хімії та сталого розвитку*, 2, 48–56, doi: https://doi.org/10.32782/pcsd-2021-2-8

ВЗАЄМОДІЯ У СИСТЕМАХ Tl₂Se-Ga(In)₂Se₃-SnSe₂

Методами фізико-хімічного аналізу (диференційно-термічного, рентгенофазового, рентгеноструктурного) проведено дослідження квазіпотрійних систем $Tl_2Se-Ga(In)_2Se_3-SnSe_2$ та побудовано їх ізотермічні перерізи при 520 К в повному концентраційному інтервалі. У системі $Tl_2Se-Ga_2Se_3-SnSe_2$ встановлено існування трьох тетрарних сполук $Tl_2Ga_2SnSe_6$, $TlGaSnSe_4$ і $TlGaSn_2Se_6$. На основі $TlGaSe_2$ існує а-твердий розчин, граничний склад якого становить 18 мол. % SnSe_npu 670 К. Тетрарні сполуки утворюються за перитектичними реакціями $L+a\leftrightarrow Tl_2Ga_2SnSe_6$ при 956 К, $L+Tl_3Ga_3SnSe_8\leftrightarrow TlGaSnSe_4$ при 851 К та $L+SnSe_2\leftrightarrow TlGaSn_2Se_6$ при 833 К. Сполуку $Tl_2Ga_2SnSe_6$ розшифровано в тетрагональній сингонії (ПГ I4/mcm; a=08095(I), c=0,402(1) нм), а $TlGaSn_2Se_6 - в$ тригональній сингонії (ПГ R3; a = 1,03289, c = 0,94340 нм).

Діаграма стану системи TlInSe₂-SnSe₂ евтектичного типу. Розчинність на основі TlInSe₂ сягає 28 мол. % TlInSe₂.

У системі Tl_2^{2} Se-Ga_2Se_3-SnSe_2 при 520 К є 9 однофазних полів, 14 областей двофазних рівноваг, які поділяють концентраційний трикутник на 10 полів трифазних рівноваг. Найбільші області твердих розчинів утворюють сполуки TlGaSe, і Ga_Se_x.

 \acute{V} системі \acute{Tl}_2 Se– \acute{In}_2 Še₃–SnSe₂ при 520 К визначено розташування 5 трифазних полів, ідентифіковано 11 двофазних рівноваг між бінарними та тернарними сполуками. Розчинність на основі сполуки TlInSe₂ становить 28 мол. % по перерізу TlInSe₂–SnSe₂.

Вирощування монокристалів твердих розчинів $Tl_{1-x}Ga_{1-x}Sn_xSe_2$ (x=0.05-0.1) та $Tl_{1-x}In_{1-x}Sn_xSe_2$ (x=0-0,25), що утворюються в системах $TlGa(In)Se_2$ —SnSe_ проводили методом Бріджмена-Стокбаргера. За даними рентгеноструктурного аналізу встановлено, що вирощені кристали $Tl_{1-x}Ga_{1-x}Sn_xSe_2$ мають моноклінну (ПГ C_2/c), а кристали $Tl_{1-x}In_{1-x}Sn_xSe_2$ — тетрагональну (ПГ I4/mcm) сингонії.

Ключові слова: фазова діаграма, ренттенофазовий аналіз, ренттеноструктурний аналіз, квазіпотрійна система, ізотермічний переріз, монокристал, кристалічна структура.

Oksana TSISAR

Candidate of Chemical Sciences, Head of the Department of Food Technologies, Volyn Professional College of the National University of Food Technologies, 6 Cathedral St., Lutsk, Volyn region, Ukraine, 43016

Ivan OLEKSEYUK

Doctor of Chemical Sciences, Professor, Professor at the Department of Chemistry and Technology, Lesya Ukrainka Volyn National University, 13 Voli ave., Lutsk, Volyn region, Ukraine, 43025 ORCID: 0000-0001-7206-4351

Larysa MARUSHKO

PhD in Chemistry, Associate Professor, Senior Lecturer at the Department of Organic Chemistry and Pharmacy, Lesya Ukrainka Volyn National University, 13 Voli ave., Lutsk, Volyn region, Ukraine, 43025 **ORCID:** 0000-0002-8373-6747

Ella KADYKALO

PhD in Chemistry, Senior Lecturer at the Department of Organic Chemistry and Pharmacy, Lesya Ukrainka Volyn National University, 13 Voli ave., Lutsk, Volyn region, Ukraine, 43025 **ORCID:** 0000-0002-5613-1662

Lyudmyla PISKACH

PhD in Chemistry, Professor, Professor at the Department of Chemistry and Technology, Lesya Ukrainka Volyn National University, 13 Voli ave., Lutsk, Volyn region, Ukraine, 43025 **ORCID:** 0000-0003-3117-4006

To cite this article: Tsisar, O., Olekseyuk, I., Marushko, L., Kadykalo, E. & Piskach, L. (2021). Vzaiemodiia u systemakh Tl₂Se–Ga(In)₂Se₃–SnSe₂. [Interaction in the systems Tl₂Se–Ga(In)₂Se₃–SnSe₂]. *Problems of Chemistry and Sustainable Development*, 2, 48–56, doi: https://doi.org/10.32782/pcsd-2021-2-8

INTERACTION IN THE SYSTEMS Tl₂Se–Ga(In)₂Se₃–SnSe₂

Quasi-ternary systems $Tl_2Se-Ga(In)_2Se_3$ -SnSe_ were investigated by physico-chemical analysis methods (differential thermal, X-ray phase, X-ray structural analysis), and their isothermal sections at 520 K in the entire concentration range were plotted. On the section of $TlGaSe_2$ -SnSe_ the existence of three compounds $Tl_2Ga_2SnSe_6$, $TlGaSnSe_4$, and $TlGaSn_2Se_6$, was found. The quaternary compounds form in the peritectic reactions $L+\alpha \leftrightarrow Tl_2Ga_2SnSe_6$ at 956 K, $L+Tl_3Ga_3SnSe_8 \leftrightarrow Tl-GaSnSe_4$ at 851 K, and $L+SnSe_2 \leftrightarrow TlGaSn_2Se_6$ at 833 K. The crystal structure of $Tl_2Ga_2SnSe_6$ was determined in the tetragonal symmetry, S.G. I4/mcm; a=08095(1), c=0.402(1) nm), $TlGaSn_2Se_6$ has trigonal structure (S.G. R3; a=1.03289, c=0.94340 nm). The isothermal section of the $Tl_2Se-Ga_2Se_3$ -SnSe_2 system at 520 K contains 9 single-phase fields and 14 regions

The isothermal section of the Tl₂Se–Ga₂Se₃–SnSe₂ system at 520 K contains 9 single-phase fields and 14 regions of two-phase equilibria which separate the concentration triangle into 10 fields of three-phase equilibria. The largest solid solutions ranges are those of the TlGaSe₂ and Ga₂Se₃ compounds. The location of 5 three-phase fields and 11 two-phase equilibria between binary and ternary compounds were identi-

The location of 5 three-phase fields and 11 two-phase equilibria between binary and ternary compounds were identified at the section of the Tl₂Se–In₂Se₃–SnSe₂ system at 520 K. Phase diagram of the TlInSe₂–SnSe₂ section of the eutectic type. The solid solubility range of TlInSe₂ along this section reaches 28 mol.%.

Single crystals of the solid solutions $Tl_{1,x}Ga_{1,x}Sn_xSe_2$ (x=0.05–0.1) and $Tl_{1,x}In_{1,x}Sn_xSe_2$ (x=0–0.25) that form in the TlGa(In)Se₂-SnSe₂ systems were grown by the Bridgman-Stockbarger method. According to X-ray diffraction analysis results, it was determined that the grown $Tl_{1,x}Sn_xSe_2$ crystals have monoclinic structure (S.G. C₂/c), and the $Tl_{1,x}In_{1,x}Sn_xSe_2$ crystals are tetragonal (S.G. I4/mcm).

Key words: phase diagram, X-ray phase analysis, X-ray structural analysis, quasi-ternary system, isothermal section, single crystal, crystal structure.

Потенціал, який відкривають шаруваті напівпровідники для вивчення ряду нових явищ у фізиці твердого тіла, далеко ще не вичерпаний, та інтерес дослідників до них постійно зростає. Властивості твердих розчинів на основі халькогенідів Талію дозволяють керувати їх фізичними параметрами та використовувати у ролі детекторів, оптичних аналізаторів, фото- та рентгеноперетворювачів, приймачів видимої та ІЧ- областей спектру. Розпочаті нами дослідження системи TlInSe,-SnSe,[1],вказуютьнаутворенняширокоїобласті твердих розчинів в інтервалі 0-28 мол.% SnSe,. Для кристалів Tl_{1-x}In_{1-x}Sn_xSe₂ (x=0; 0.1; 0.2; 0.25) досягнуті значення параметрів нелінійнооптичних ефектів третього порядку є максимально критичними, що дозволяє передбачити їх широке використання як ефективних матеріалів для нелінійного перетворення частот у ІЧ області спектру, що є критично для ІЧ лідарних систем. Особливим інтересом може бути їх застосування у фотонних ґратках [2]. З метою пошуку нових матеріалів для напівпровідникової галузі була досліджена фізикохімічна взаємодія у квазіпотрійних системах Tl₂Se-Ga(In)₂Se₃-SnSe₂ у повному концентраційному інтервалі. У цій статті ми також представляємо результати одержання монокристалів Tl_{1-x}Ga_{1-x}Sn_xSe₂ (x=0.05; 0.1) та їх оптичні, електричні й фотоелектричні властивості.

Вихідні бінарні сполуки мають конгруентний характер плавлення: 663 [3] (Tl₂Se), 1283 [4-5] (Ga₂Se₃), 1170 [6] (In₂Se₃) та 948 К [7] (SnSe₂) і можуть бути вихідними компонентами досліджуваних квазіпотрійних систем.

Талій(I) селенід кристалізується в тетрагональній сингонії (ПГ P4/ncc або P4/n) [3, 8-9] Сполуки Ga(In)₂Se₃ мають алмазоподібну структуру, є нормальновалентними та катіонодефектними і характеризуються великою кількістю поліморфних модифікацій; для них реалізуються і ґратка сфалериту, і гексагональна вюрцитоподібна структура, і моноклінна [3, 11-16]. Станум диселенід(IV) має пластинчасту будову і кристалізується в структурному типі CdI₂ [17].

У системі $Tl_2Se-Ga_2Se_3$ існує сполука TlGaSe₂, яка плавиться конгруентно при 1073 К [18].

У системі $Tl_2Se-In_2Se_3$ формується сполука TlInSe₂, яка плавиться конгруентно при 1023 К, і TlIn₅Se₈ з інконгруентним характером плавлення при 1029 К [19].

У системі Tl₂Se–SnSe₂ утворюються три сполуки: Tl₄SnSe₄, Tl₂SnSe₃, що плавляться конгруентно при 718 і 735 К відповідно, Tl₂Sn₂Se₅ існує у вузькому температурному інтервалі (утворюється при 732 К по перитектичній реакції: L+SnSe₂ \leftrightarrow Tl₂Sn₂Se₅ і розкладається нижче 655 К) [20].

Основні дані щодо кристалохімічних параметрів сполук систем $Tl_2Se-C^{III}_2Se_3$ і $Tl_2Se-SnSe_2$ наведені в табл. 1.

Системи Ga_2Se_3 -SnSe₂ і In_2Se_3 -SnSe₂ евтектичного типу з твердими розчинами на основі вихідних сполук [26-28].

У роботі [29] досліджено фазові рівноваги в системі TlGaSe₂–SnSe₂. Встановлено утворення сполук із вмістом 25, 50 і 66,7 мол. % SnSe₂. Три тетрарні сполуки утворюються за перитектичними реакціями L+ α \leftrightarrow Tl₃Ga₃SnSe₈ при 952 K, L+Tl₃Ga₃SnSe₈ \leftrightarrow TlGaSnSe₄ при 851 K та L+SnSe₂ \leftrightarrow TlGaSn₂Se₆ при 833 K. На основі TlGaSe₂ існує твердий розчин, граничний склад якого становить 18 мол. % SnSe, при 670 К.

Діаграма стану системи $TlInSe_2-SnSe_2$ евтектичного типу (рис. 1). На основі вихідної тернарної сполуки $TlInSe_2$ утворюється твердий розчин, протяжність якого становить 72-100 мол. % $TlInSe_2$ [1, 29].

Для дослідження фазових рівноваг у системах $Tl_2Se-Ga(In)_2Se_3-SnSe_2$ синтезовано 94 зразки. Як вихідні компоненти для виготовлення сплавів використовували високочисті елементи Tl, Sn, Ga, In, Se (чистота є більшою 99,99 вагових %). Зразки виготовляли сплавлянням у вакуумованих кварцових ампулах в печі шахтного типу. Зразки нагрівали до максимальної температури, при якій витримували 5 год. Далі розплави охолоджували

Таблиця 1

$\frac{1}{2} = \frac{1}{2} = \frac{1}$					
Сполука	ПГ	Періоди ґратки, нм			Inc
		a	b	c	л-ра
TlGaSe ₂	C2/c	1,0779	1,0776	1,5663	[21]
		b			
	I4/mcm	0,7620	_	3,0500	[22]
		<i>α</i> =90,15°	b	γ=90,15°	
TlInSe ₂	I4/mcm	0,8075	-	0,6847	[23]
Tl ₂ SnSe ₃	Pnam	0,8051	0,8169	2,124	[24]
Tl ₄ SnSe ₄	$P2_{1}/c$	0,8481	0,8411	1,5800	[25]
		$\beta = 102,39$			[23]

Кристалохімічні параметри сполук систем Tl,Se-C^{III},Se, і Tl,Se-SnSe,

з швидкістю 10–20 К/год до температури 520 К і відпалювали для встановлення рівноважного стану протягом 500 год. Після відпалу ампули зі зразками загартовували до кімнатної температури на повітрі.

Дослідження одержаних зразків проводили рентгенофазовим (РФА) і диференційно-термічним (ДТА) аналізам. Порошкограми зразків отримували на дифрактометрі ДРОН-4-13 з використанням СиК_а-випромінювання, реєстрація проводилася у межах 2θ 10-80° з кроком лічильника 0,05° та часом збору інформації 5 с у точці. Диференційний термічний аналіз (ДТА) проводили на дериватографі системи Paulik-Paulik-Егdey; контроль температури здійснювали платина-платинородієвою термопарою (Pt/PtRh).

Методом Бріджмена-Стокбаргера були отримані монокристали з області твердих розчинів у двозонній вертикальній печі. Розраховані кількості елементів загальною масою 10 г у кожному випадку завантажували у кварцові контейнери з конусоподібним дном, вакуумували та запаювали. Спочатку синтез проводився в печі шахтного типу у вакуумних кварцових ампулах шляхом плавлення вихідних компонентів (Tl, Ga, In, Sn, Se), взятих в стехіометричній кількості, що відповідає складам Tl_{1-x}Ga_{1-x}Sn_xSe₂ (x=0.05-0.1) та $Tl_{1,v}In_{1,v}Sn_vSe_2$ (x=0-0,25). Розміщувалися кварцові контейнери з шихтою конусною частиною вверх і нагрівалися до температури 1220 К. При максимальній температурі проводилася витримка протягом 10 год, після якої контейнери в розплавом переносилися у попередньо виведені на режим вирощування ростові печі (конусною частиною донизу). Максимальні температури зони росту (верхня піч) підбиралися із врахуванням фазових діаграм системи TlGa(In)Se₂-SnSe₂ і становили 70-80 К вище температур лінії ліквідуса, а температури зони відпалу (нижня піч) складала 720-770 К. Градієнт температур на фронті кристалізації знаходився в інтервалі 3-3,5 К/мм. Швидкість переміщення контейнера з розплавом становила 7 мм/добу. Після досягнення ізотермічної зони кристали відпалювали протягом 100 год. Ще 100 год було витрачено на їх охолодження до кімнатної температури. Умови росту кристалів твердих розчинів вибирали з урахуванням аналізу побудованих Т-х діаграм та літературних даних щодо отримання монокристалів [30, 31].

Результати повторного вивчення системи $TlGaSe_2$ -SnSe₂ (рис. 2) підтвердили утворення сполук із вмістом SnSe₂ 50 і 66,7 мол. % [32].

Рис. 2. Діаграма стану системи TIGaSe₂–SnSe₂ [32]: 1-L, $2-\alpha$, $3-L+\alpha$, $4-\alpha+Tl_2Ga_2SnSe_6$, $5-L+Tl_2Ga_2SnSe_6$, $6-L+TIGaSnSe_4$, $7-L+TIGaSn_2Se_6$, $8-L+SnSe_2$, $9-Tl_2Ga_2SnSe_6+TIGaSnSe_4$, $10-TIGaSnSe_4+TIGaSn_2Se_6$, $11-TIGaSn_2Se_6+SnSe_2$

Дані РФА і ДТА свідчать про утворення фази складу $Tl_2Ga_2SnSe_6$, а не $Tl_3Ga_3SnSe_8$, як повідомлялося в [29]. Сполука $Tl_2Ga_2SnSe_6$ утворюється за перитектичною реакцією L+ $\alpha \leftrightarrow Tl_2Ga_2SnSe_6$ при 956 К. Граничний склад твердого розчину на основі талійгалієвого диселеніду становить ~11 мол. %, що є меншим, ніж в роботі [29].

Сполуку Tl₂Ga₂SnSe₆ вдалося проіндексувати в тетрагональній сингонії (ПГ *I4/mcm;* a=08095(1), c=0, 402(1) нм) [33]. В роботі [34] наведено для тетрарної сполуки TlGaSnSe₄ кристалохімічні відомості в моноклінній (ПГ *P2*₁/*c,* a=0,7501(1), b=1,35831(4), c=1,8203(1) нм, $\beta =95,267(3)$ о) та кубічній (ПГ *Pa*⁻³, a=1,344755(2) нм) структурах. Кристалічна структура TlGaSn₂Se₆ [35] була уточнена, використовуючи вихідні атомні координати структурного типу TlInGe₂Se₆ [36] (тригональна ПГ *R*3; a = 1,03289, c = 0,94340 нм).

За результатами рентгенофазового аналізу побудовано ізотермічний переріз системи $Tl_2Se-Ga_2Se_3-SnSe_2$ при 520 К, який наведено на рис. 3.

Підтверджено утворення наступних тернарних сполук: Tl_4SnSe_4 , Tl_2SnSe_3 , $TlGaSe_2$. На перерізі $TlGaSe_2$ – $SnSe_2$ формуються три тетрарні фази. Між 9 однофазними полями лежать 14 областей двофазних рівноваг, які поділяють концентраційний трикутник на 10 полів трифазних рівноваг. Як видно з рисунка, найбільші області твердих розчинів утворюють сполуки $TlGaSe_2$ і Ga_2Se_3 . Використовуючи літературні дані щодо обмежуючих систем і квазібінарного перерізу $TlInSe_2-SnSe_2$ та власні дослідження сплавів методом рентгенофазового аналізу побудовано ізотермічний переріз квазіпотрійної системи $Tl_2Se-In_2Se_3-SnSe_2$ при 520 К. Результати представлені на рис. 4.

Тетрарних сполук у цій системі не виявлено. Визначено розташування 5 трифазних полів, ідентифіковано 11 двофазних рівноваг між бінарними та тернарними сполуками. Розчинність на основі сполуки TlInSe₂ становить 28 мол. % по перерізу TlInSe₂–SnSe₂, що узгоджується з літературними даними [1, 29].

Максимальні розміри монокристалів були лімітовані вагою шихти і розмірами контейнера і не перевищували 20-25 мм довжиною та були у діаметрі до 13 мм.

За даними рентґеноструктурного аналізу встановлено, що вирощені кристали $Tl_{1-x}Ga_{1-x}Sn_xSe_2$ мають моноклінну сингонію (ПГ C_2/c), а $Tl_{1-x}In_{1-x}Sn_xSe_2$ — тетрагональну сингонію (ПГ I4/mcm). Механізм їх утворення наступний: атоми D^{IV}(Ge,Sn) заміщують атоми Tl та C^{III}(Ga, In) причому атоми D^{IV} заміщують положення атомів C^{III}, а атоми Tl створюють вакансії Талію (V_{Tl}), концентрація яких збільшується із збільшенням вмісту Стануму. Монокристали легко сколюються вздовж площини спайності, утворючи дзеркально гладку поверхню.

Для отриманих монокристалів $Tl_{1-x}Ga(In)_{1-x}Sn_xSe_2$ вивчалися оптичні, електричні та фотоелектричні властивості [37-46].

Рис. 3. Ізотермічний переріз системи Tl₂Se–Ga₂Se₃–SnSe₂ при 520 К

Рис. 5. Вигляд монокристалу Tl_{0,9}Ga_{0,9}Sn_{0,1}Se₂

Рис. 6. Вигляд монокристалу Tl_{0.9}In_{0.9}Sn_{0.1}Se₂

ЛІТЕРАТУРА:

1. Mozolyuk M.Yu., Piskach L.V., Fedorchuk A.O., Kityk I.V., Olekseyuk I. D., Parasyuk O.V. Phase diagram of the quasi-binary system TlInSe₂–SnSe₂. *J. Alloys Compds.* 2011. 509. P. 2693-2696.

2. Myronchuk G.L., Davydyuk G.E., Parasyuk O.V., Khyzhun O.Y., Andrievski R.A., Fedorchuk A.O., Danylchuk S.P., Piskach L.V., Mozolyuk M.Yu. *J. Mater. Sci: Mater. Electr.* 2013. 24. P. 3555-3563.

3. Абрикосов Н.Х., Банкина В.Ф., Порецкая Л.В. и др. Полупроводниковые халькогениды и сплавы на их основе. Москва : Наука, 1975. 219 с.

4. Okamoto H., Massalski T.B. Ga–Se (Gallium–Selenium). *Binary Alloy Phase Diagrams. Materials Park, Ohio: ASM International.* 1990. 2. P. 1852-1854.

5. Okamoto H. Ga-Se (Gallium-Selenium). J. Phase Equilib. 2009. 30. P. 658.

6. Okamoto H. In-Se (Indium-Selenium). J. Phase Equilib. 1998. 19(4). P. 400.

7. Караханова М.И., Пашинкин А.С., Новоселова А.В. О диаграмме плавкости системы олово-селен. Неорг. матер. Изв. АН СССР. 1966. 2(7). С. 1186-1189.

8. Стасова М.М., Вайнштейн Б.К. Электронографическое определение структуры Tl₂Se. *Кристаллография*. 1958. 3(2). С. 141–147.

9. Man L.I., Parmon V.S., Imamov R.M., Avilov A.S. The electron diffraction determination on the structure of the tetragonal phase Tl₅Se₃. *Kristallografiya*. 1980. 25. P. 1070-1072.

10. Barchiy Igor, Tovt Valeriya, Piasecki Michal, Fedorchuk Anatolii, Pogodin Artem I., Filep Michal, Stercho Ivanna. Tl₂Se–TlInSe₂–Tl₄P₂Se₆ quasiternary system. *Ukrainskij Khimicheskij Zhurnal.* 2019. 85(2). P. 101-110.

11. Khan M.Y. Crystal data for β-Ga,Se₃. J. Appl. Cryst. 1977. 10. P. 70-71.

12. Lubbers D., Leute V. The crystal structure of β-Ga₂Se₃. J. Solid State Chem. 1982. 43(3). P. 339-345.

13. Медведева З., Гулиев Т. Выращивание монокристалов селенида индия из газовой фазы. Изв. АН СССР. Неорг. матер. 1965. 1(6). Р. 848.

14. Osamura K., Murakami J., Tomile J. Crystal structues of α - and β -Indium Selenide, In₂Se₃. Japan J. Phys. Soc. 1966. 21(9). P. 1848.

15. Popovic S., Tonejc A., Grzeta-Plencovic B. et al. Revised and new crystal data for indium selenides. *J. Appl. Cryst.* 1979. 12. P. 416.

16. Pfitzner A., Lutz H. Redetermination of the crystal structure of gamma-In₂Se₃ by twin crystal X-Ray method. *J. Solid State Chem.* 1996. 124. P. 305.

17. Busch G., Frohlich C., Hulliger F., Steimeier E. Structur, elektrische und thermoelektrische Eigenschaften von SnSe₂. *Helv. Phys. Acta.* 1961. 34(4). P. 359-368.

18. Олексеюк І.Д., Цісар О.В., Піскач Л.В., Парасюк О.В. Система Tl₂Se-Ga₂Se₃. *Наук. вісн. Східноєвроп. нац. ун-ту ім. Лесі Українки.* 2014. 20. С. 26-28.

19. Mucha I. Phase diagram for the quasi-binary thallium(I) selenide-indium(III) selenide system. *Thermochim. acta*. 2012. 550. P. 1-4.

20. Лазарев В.Б., Переш Е.Ю., Староста В.И., Мудрый В.В. Фазовые равновесия и свойства соединений в системах Tl₂S(Se)–SnS₂(Se₂). *Журн. неорг. химии.* 1985. 30(6). С. 1502-1506.

21. Delgado G.E., Mora A.J., Perez F.V., Gonzalez J. Growth and crystal structure of the layered compound TlGaSe₂. *Cryst. Res. Technol.* 2007. 42. P. 663-666.

22. Range K.J., Mahlberg G., Obenland S. Hochdruckphasen von TlAlSe₂ und TlGaSe₂ mit TlSe-Struktur. *Z. Naturforsch.* 1977. 32. P. 1354–1355.

23. Mueller D., Eulenberger G., Hahn H. Über ternaere Thalliumchalkogenide mit Thalliumselenidstruktur. Z. Anorg. Allg. Chem. 1973. 398. S. 207-220.

24. Jaulmes S., Houenou P. Structure crystalline du seleniure d'etain(IV) et de thallium(I): Tl₂SnSe₃. *Mater. Res. Bull.* 1980. 15. P. 911-915.

25. Akinocho G., Houenou P., Oyetola S. et al. Etude structurale de Tl₄SnSe₄. J. Solid State Chem. 1991. 93. P. 336-340.

26. Гаджиева А.З., Мардахаев Б.Н., Рустамов П.Г. Синтез и исследования сплавов системы Ga₂Se₃-SnSe₂. *Уч. зап. Азерб. ун-та. Сер. хим.* 1976. 1. С. 15-20.

27. Allaphini F., Flahaut J. Foureroy P.H. et al. Diagramme de phases du systeme ternaire GaSe–SnSe–Se. Domaine formatain de verres. *Ann. Chim. (France).* 1981. 6(6). P. 501-514.

28. Гаджиева А.З., Рустамов П.Г., Мардахаев Б.Н. Физико-химическое исследование системы In₂Se₃-SnSe₂. *Азербайдж. хим. ж.* 1973. 5. С. 138-141.

29. Мозолюк М.Ю. Фазові рівноваги та властивості фаз у системах $Tl_2X-B^{II}X-D^{IV}X_2$ і $TlC^{III}X_2-D^{IV}X_2$ ($B^{II}-Hg$, Pb; $C^{III}-Ga$, In; $D^{IV}-Si$, Ge, Sn; X–S, Se): автореф. дис. на здобуття наук. ступеня канд. хім. наук: [спец.] 02.00.01 «неорганічна хімія» /, СНУ імені Лесі Українки. Луцьк, 2013.

30. Вильке К.-Т. Выращивание кристаллов. Л.: Недра, 1977. 600 с.

31. Таиров Ю. М. Технология полупроводниковых и диэлектрических материалов. М.: Высш. шк., 1990. 423 с. 32. Цісар О.В. Системи Tl₂X-C^{III}₂X₃-D^{IV}X₂(C^{III} – Ga, In; D^{IV} – Ge, Sn; X – S, Se): фазові рівноваги, склоутворення та властивості проміжних фаз: дис... канд. хім. наук: 02.00.01 / СНУ імені Лесі Українки. Луцьк, 2018. 144 с.

33. Babizhetskyy Volodymyr, Levytskyy Volodymyr, Smetana Volodymyr, Wilk-Kozubek Magdalena, Tsisar Oksana, Piskach Lyudmyla, Parasyuk Oleg and Mudring Anja-Verena. New cation-disordered quaternary selenides $Tl_2Ga_2TtSe_6$ (*Tt* = Ge, Sn). *Z. Naturforsch.* 2020. 75(1–2)b. P. 135-142.

34. Daniel Friedrich, Hye Ryung Byun, Shiqiang Hao, Shane Patel, Christopher Wolverton, Joon Ik Jang, and Mercouri G. Kanatzidis Layered and Cubic Semiconductors $AGaM Q_4$ ($A^+ = K^+$, Rb^+ , Cs^+ , Tl^+ ; $M^{4+} = Ge^{4+}$, Sn^{4+} ; $Q^{2-} = S^{2-}$, Se^{2-}) and High Third-Harmonic Generation. *J Am Chem Soc.* 2020. 142(41):17730-17742.

35. Parasyuk O.V., Babizhetskyy V.S., Khyzhun O.Y. et al. Novel quaternary $TIGaSn_2Se_6$ single crystal as promising material for laser operated infrared nonlinear optical modulators. *Crystals*. 2017. 7(341).

36. Khyzhun O.Y., Parasyuk O.V., Tsisar O.V., Piskach L.V., Myronchuk G.L., Levytskyy V.O., Babizhetskyy V.S. New quaternary thallium indium germanium selenide TlInGe₂Se₆: Crystal and electronic structure. *Journal of Solid State Chemistry*. 2017. 254. P. 103-108.

37. Davydyuk G.E., Khyzhun O.Y., Reshak A.H., Kamarudin H., Myronchuk G.L., Danylchuk S.P., Fedorchuk A.O., Piskach L.V., Mozolyuk M.Yu., Parasyuk O.V. Photoelectrical properties and the electronic structure of $Tl_{1-x}In_{1-x}Sn_xSe_2(x=0, 0.1, 0.2, 0.25)$ single crystalline alloys. *Phys. Chem. Chem. Phys.* 2013. 15. P. 6965-6972.

38. Myronchuk G.L., Davydyuk G.E., Parasyuk O.V., Khyzhun O.Y., Andrievski R.A., Fedorchuk A.O., Danylchuk S.P., Piskach L.V., Mozolyuk M.Yu. $Tl_{1-x}In_{1-x}Sn_xSe_2$ (x=0, 0.1, 0.2, 0.25) single-crystalline alloys as promising non-linear optical materials. *J. Mater. Sci: Mater. Electr.* 2013. 24. P. 3555-3563.

39. Махновець Г.В., Мирончук Г.Л., Парасюк О.В. Оптичні властивості кристалів системи Tl_{1-x}Ga₁₋ Sn₂Se₂ (x=0,05; 0,1). *Науковий вісник Чернівецького університету. Хімія.* 2016. 781. С. 75-79.

40. Парасюк О., Піскач Л., Мирончук Г., Замуруєва О., Махновець Г., Цісар О., Бабіжецький В., Левицький В. Одержання кристалів TlGa(In)Se₂ та вплив катіонного заміщення на їхні фізичні параметри. *Праці наукового товариства ім. Шевченка. Хімічні науки.* 2017. 48. С. 64-74.

41. Tsisar O.V., Piskach L.V., Marushko L.P., Kadykalo E.M., Myronchuk G.L., Makhnovetz A., Denysyuk M., Reshakd A.H., El-Naggar A.M., Albassamg A.A., Kityk I.V. Optical features of novel semiconducting crystals Tl₁, Ga₁, Sn₂Se₂(x=0.05; 0.1). *Optik.* 2020. 206. 163572(8).

42. Кажукаускас В., Мирончук Г.Л., Гарбачаускас Р., Парасюк О.В., Савіцкі С., Новосад О.В., Данильчук С.П., Піскач Л.В. Низькотемпературна фотопровідність та термостимульована провідність монокристалів Tl_{1-x}In_{1-x}Sn_xSe₂. *Сенсорна електроніка та мікросистемні технології.* 2018. 15(1). С. 53-62.

43. Novosad O., Myronchuk G., Danylchuk S., Zamurueva O., Piskach L., Kityk I., Piasecki M., Tsisar O. Specific Features of Photoconductivity of $Tl_{1-x}In_{1-x}Sn_xSe_2$ Monocrystals at Low Temperatures. *Physics and Chemistry of Solid State*. 2019. 20(1). P. 50-55.

44. Махновець Г.В., Мирончук Г.Л., Парасюк О.В. Оптичні властивості кристалів системи Tl1-xGa1-xSnxSe2 (x=0,05; 0,1). *Науковий вісник Чернівецького університету: Зб. наук. праць.: Хімія.* Чернівці: Чернівецький національний університет, 2016. 781. С. 75-80.

45. Zamurueva O.V., Myronchuk G.L., Ozga K., Szota M., El-Naggar A.M., Albassam A.A., Parasyuk O.V., Piskach L.V., Kityk I.V. Transport phenomena in the single crystals $Tl_{1-x}In_{1-x}Ge_xSe_2$ (x=0.1, 0.2). *Archives of Metallurgy and Materials*. 2015. 60(3). P. 2025-2028.

46. Myronchuk G.L., Danylchuk S.P., Zamurueva O.V., Piskach L.V., Kityk I.V., Piasecki M.V., Tsisar O.V. Особливості фотопровідність монокристалів $Tl_{1-x}In_{1-x}Sn_xSe_2$ при низьких температурах. *Фізика і хімія твердого тіла*. 2019. 20(1). С. 50-55.

REFERENCES:

1. Mozolyuk, M.Yu., Piskach, L.V., Fedorchuk, A.O., Kityk, I.V., Olekseyuk, I. D., Parasyuk, O.V. (2011). Phase diagram of the quasi-binary system TlInSe₂–SnSe₃. *J. Alloys Compds*, 509, 2693-2696 [in English].

2. Myronchuk, G.L., Davydyuk, G.E., Parasyuk, O.V., Khyzhun, O.Y., Andrievski, R.A., Fedorchuk, A.O., Danylchuk, S.P., Piskach, L.V., Mozolyuk, M.Yu. (2013). *J. Mater. Sci: Mater. Electr*, 24, 3555-3563 [in English].

3. Abrykosov, N.Kh. Bankyna, V.F. Poretskaia, L.V. Y Dr. (1975). *Poluprovodnykovye Khalkohenydy Y Splavy Na Ykh Osnove [Semiconductor chalcogenides and alloys based on them]*. Moscow: Nauka [in Russian].

4. Okamoto, H., Massalski, T.B. Ga–Se (Gallium–Selenium). (1990). *Binary Alloy Phase Diagrams. Materials Park, Ohio: ASM International*, 2, 1852-1854 [in English].

5. Okamoto, H. Ga-Se (Gallium-Selenium). J. Phase Equilib. 2009. 30. P. 658 [in English].

6. Okamoto, H. (1998). In-Se (Indium-Selenium). J. Phase Equilib. 19(4). 400 [in English].

7. Karakhanova, M.Y. Pashynkyn, A.S. Novoselova, A.V. (1966). O Dyahramme Plavkosty Systemy Olovo–Selen. About the melting diagram of the tin-selenium system. *Neorh. Mater. Yzv. AN SSSR – Inorganic materials Bulletin of the Academy of Sciences of the USSR*. 2(7), 1186–1189 [in Russian].

8. Stasova, M.M. Vainshtein, B.K. (1958). Elektronohrafycheskoe Opredelenye Struktury Tl₂Se. Electron diffraction determination of the Tl2Se structure. *Krystallohrafyia* – *Crystallography*, 3(2), 141–147 [in Russian].

9. Man, L.I., Parmon, V.S., Imamov, R.M., Avilov, A.S. (1980). The electron diffraction determination on the structure of the tetragonal phase Tl₅Se₃. *Kristallografiya*, 25, 1070-1072 [in English].

10. Barchiy, Igor, Tovt, Valeriya, Piasecki, Michal, Fedorchuk Anatolii, Pogodin Artem I., Filep Michal, Stercho Ivanna. (2019). Tl₂Se–Tl₄P₂Se₆ quasiternary system. *Ukrainskij Khimicheskij Zhurnal*, 85(2), 101-110 [in English].

11. Khan, M.Y. (1977). Crystal data for β-Ga,Se₂. J. Appl. Cryst, 10, 70-71. [in English].

12. Lubbers, D., Leute, V. (1982) The crystal structure of β-Ga₂Se₂. J. Solid State Chem., 43(3), 339-345 [in English].

13. Medvedeva, Z. Hulyev, T. (1965). Vyrashchyvanye Monokrystalov Selenyda Indyia iz Hazovoi Fazy. [Growing indium selenide single crystals from the gas phase]. *Neorh. Mater. Yzv. AN SSSR – Inorganic materials Bulletin of the Academy of Sciences of the USSR.* 1(6). 848 [in Russian].

14. Osamura, K., Murakami, J., Tomile, J. (1966). Crystal structues of α - and β -Indium Selenide, In₂Se₃. *Japan J. Phys. Soc*, 21(9), 1848 [in English].

15. Popovic, S., Tonejc, A., Grzeta-Plencovic, B. et al. (1979). Revised and new crystal data for indium selenides. J. Appl. Cryst, 12, 416. [in English].

16. Pfitzner, A., Lutz, H. (1996). Redetermination of the crystal structure of gamma-In₂Se₃ by twin crystal X-Ray method. *J. Solid State Chem.*, 124, 305 [in English].

17. Busch, G., Frohlich, C., Hulliger, F., Steimeier, E. (1961). Structur, elektrische und thermoelektrische Eigenschaften von SnSe₂. *Helv. Phys. Acta*, 34(4), 359–368 [in German].

18. Olekseiuk, I.D. Tsisar, O.V. Piskach, L.V. Parasiuk, O.V. (2014). Systema Tl2Se–Ga2Se3 [Tl2Se–Ga2Se3 system]. Nauk. Visn. Skhidnoievrop. Nats. Un-Tu Im. Lesi Ukrainky – Scientific Bulletin of the Lesia Ukrainka East European National University 20. 26-28 [in Ukrainian].

19. Mucha, I. (2012). Phase diagram for the quasi-binary thallium(I) selenide-indium(III) selenide system. *Thermochim. Acta*, 550, 1-4 [in English].

20. Lazarev, V.B. Peresh, E.Yu., Starosta, V.Y. Mudryi, V.V. (1985). Fazovye Ravnovesyia Y Svoistva Soedynenyi V Systemakh Tl2S(Se)–SnS2(Se2). Phase equilibria and properties of compounds in Tl2S (Se) –SnS2 (Se2) systems. *Zhurn. Neorh. Khymyy – Journal of Inorganic Chemistry*, 30(6), 1502-1506 [in Russian].

21. Delgado, G.E., Mora, A.J., Perez, F.V., Gonzalez, J. (2007). Growth and crystal structure of the layered compound TlGaSe₂. *Cryst. Res. Technol*, 42, 663-666 [in English].

22. Range, K.J., Mahlberg, G., Obenland, S. (1977) Hochdruckphasen von TlAlSe₂ und TlGaSe₂ mit TlSe-Struktur. *Z. Naturforsch*, 32, 1354-1355 [in German].

23. Mueller, D., Eulenberger, G., Hahn, H. (1973). Über ternaere Thalliumchalkogenide mit Thalliumselenidstruktur. *Z. Anorg. Allg. Chem.* 398. S. 207-220 [in German].

24. Jaulmes, S., Houenou, P. (1980). Structure crystalline du seleniure d'etain(IV) et de thallium(I): Tl₂SnSe₃. *Mater. Res. Bull.*, 15, 911-915 [in French].

25. Akinocho, G., Houenou, P., Oyetola, S. et al. (1991). Etude structurale de Tl₄SnSe₄. J. Solid State Chem., 93, 336-340 [in French].

26. Hadzhyeva, A.Z. Mardakhaev, B.N. Rustamov P.H. (1976). Syntez i Issledovanyia Splavov Systemy Ga_2Se_3 -SnSe₂. [Synthesis and studies of Ga2Se3 – SnSe2 alloys]. Uch. Zap. Azerb. Un-Ta. Ser. Khym – Scientific notes of the University of Azerbaijan Chemistry series, 1, 15-20 [in Russian].

27. Allaphini, F., Flahaut, J. Foureroy, P.H. et al. (1981). Diagramme de phases du systeme ternaire GaSe–SnSe–Se. Domaine formatain de verres. *Ann. Chim. (France)*, 6(6), 501-514 [in French].

28. Hadzhyeva, A.Z. Rustamov, P.H. Mardakhaev, B.N. (1973). Fyzyko-Khymycheskoe Yssledovanye Systemy In2Se3–SnSe2. [Physicochemical investigation of the In2Se3–SnSe2 system]. *Azerbaijan Chemical Journal Azerbaidzh. Khym. Zh.*, 5, 138-141 [in Russian].

29. Mozoliuk, M. Yu. Fazovi rivnovahy ta vlastyvosti faz u systemakh $Tl_2X-B^{II}X-D^{IV}X_2$ i $TlC^{III}X_2-D^{IV}X_2$ ($B^{II}-Hg$, Pb; $C^{III}-Ga$, In; $D^{IV}-Si$, Ge, Sn; X–S, Se). [Phase equilibria and properties of phases in the systems Tl2X - BIIX - DIVX2 and TlCIIIX2 - DIVX2 (BII – Hg, Pb; CIII – Ga, In; DIV – Si, Ge, Sn; X – S, Se)]. *Candidate thesis*. SNU imeni Lesi Ukrainky. Lutsk, 2013 [in Ukrainian].

30. Vylke, K.-T. (1977). Vyrashchyvanye krystallov. [Growing crystals]. Ltningrad: Nedra [in Russian].

31. Tayrov, Yu. M. (1990) Tekhnolohyia poluprovodnykovykh y dyelektrycheskykh materyalov. [Semiconductor and dielectric material technology]. Moscow: Vyssh. shk. 423 [in Russian].

32. Tsisar, O.V. (2018). Systemy $Tl_2X-C^{III}_2X_3-D^{IV}X_2(C^{III} - Ga, In; D^{IV} - Ge, Sn; X - S, Se)$: fazovi rivnovahy, skloutvorennia ta vlastyvosti promizhnykh faz. *Candidate thesis*. SNU imeni Lesi Ukrainky. Lutsk, 144 [in Ukrainian].

33. Babizhetskyy Volodymyr, Levytskyy Volodymyr, Smetana Volodymyr, Wilk-Kozubek Magdalena, Tsisar Oksana, Piskach Lyudmyla, Parasyuk Oleg and Mudring Anja-Verena. (2020). New cation-disordered quaternary selenides $Tl_{3}Ga_{7}TtSe_{6}$ (Tt = Ge, Sn). Z. Naturforsch. 75(1–2)b. 135-142 [in English].

34. Daniel Friedrich, Hye Ryung Byun, Shiqiang Hao, Shane Patel, Christopher Wolverton, Joon Ik Jang, and Mercouri G. Kanatzidis Layered and Cubic Semiconductors (2020). $AGaM Q_4 (A^+ = K^+, Rb^+, Cs^+, Tl^+; M^{4+} = Ge^{4+}, Sn^{4+}; Q^{2-} = S^{2-}, Se^{2-})$ and High Third-Harmonic Generation. J Am Chem Soc. 142(41):17730-17742 [in English].

35. Parasyuk, O.V., Babizhetskyy, V.S., Khyzhun, O.Y. et al. (2017). Novel quaternary TlGaSn₂Se₆ single crystal as promising material for laser operated infrared nonlinear optical modulators. *Crystals*. 7(341). [in English].

36. Khyzhun, O.Y., Parasyuk, O.V., Tsisar, O.V., Piskach, L.V., Myronchuk G.L., Levytskyy V.O., Babizhetskyy V.S. (2017). New quaternary thallium indium germanium selenide TlInGe₂Se₆: Crystal and electronic structure. *Journal of Solid State Chemistry*, 254, 103-108 [in English].

37. Davydyuk, G.E., Khyzhun, O.Y., Reshak, A.H., Kamarudin, H., Myronchuk, G.L., Danylchuk, S.P., Fedorchuk, A.O., Piskach, L.V., Mozolyuk, M.Yu., Parasyuk, O.V. (2013). Photoelectrical properties and the electronic structure of Tl_{1x}In_{1x}Sn_xSe₂ (x=0, 0.1, 0.2, 0.25) single crystalline alloys. *Phys. Chem. Chem. Phys.*, 15, 6965-6972 [in English].

38. Myronchuk, G.L., Davydyuk, G.E., Parasyuk, O.V., Khyzhun, O.Y., Andrievski, R.A., Fedorchuk, A.O., Danylchuk, S.P., Piskach, L.V., Mozolyuk, M.Yu. (2013). $\text{Tl}_{1-x}\text{In}_{1-x}\text{Sn}_x\text{Se}_2$ (x=0, 0.1, 0.2, 0.25) single-crystalline alloys as promising non-linear optical materials. *J. Mater. Sci: Mater. Electr.*, 24, 3555-3563 [in English].

39. Makhnovets, H.V., Myronchuk, H.L., Parasiuk, O.V. Optychni vlastyvosti krystaliv systemy $Tl_{1x}Ga_{1-x}Sn_xSe_2$ (x=0,05; 0,1) [Optical properties of crystals of the Tl1 xGa1-xSnxSe2 system (x=0.05; 0.1)]. *Chemistry. Naukovyi visnyk Chernivetskoho universytetu. Khimiia – Scientific Bulletin of Chernivtsi University.* 781. 75-79 [in Ukrainian].

40. Parasiuk, O., Piskach, L., Myronchuk, H., Zamuruieva, O., Makhnovets, H., Tsisar, O., Babizhetskyi, V., Levytskyi, V. (2017) Oderzhannia krystaliv TlGa(In)Se, ta vplyv kationnoho zamishchennia na yikhni fizychni parametry. Obtaining TlGa (In) Se2 crystals and the effect of cationic substitution on their physical parameters. *Pratsi naukovoho tovarystva im. Shevchenka. Khimichni nauky. Proceedings of the Scientific Society. Shevchenko. Chemical sciences.* 48, 64-74 [in Ukrainian].

41. Tsisar, O.V., Piskach, L.V., Marushko, L.P., Kadykalo, E.M., Myronchuk, G.L., Makhnovetz, A., Denysyuk, M., Reshakd, A.H., El-Naggar, A.M., Albassamg, A.A., Kityk, I.V. (2020). Optical features of novel semiconducting crystals Tl_{1x}Ga_{1x}Sn_xSe₂(x=0.05; 0.1). *Optik.* 206. 163572(8). [in English].

42. Kazhukauskas, V., Myronchuk, H.L., Harbachauskas, R., Parasiuk, O.V., Savitski, S., Novosad, O.V., Danylchuk, S.P., Piskach, L.V. (2018). Nyzkotemperaturna fotoprovidnist ta termostymulovana providnist monokrystaliv $Tl_{1,x}In_{1,x}Sn_xSe_2$. Low-temperature photoconductivity and thermally stimulated conductivity of Tl1 xIn1 xSnxSe2 single crystals. *Sensorna elektronika ta mikrosystemni tekhnolohii – Sensor electronics and microsystem technologies*. 15(1). 53-62 [in Ukrainian].

43. Novosad, O., Myronchuk, G., Danylchuk, S., Zamurueva, O., Piskach, L., Kityk, I., Piasecki, M., Tsisar, O. (2019). Specific Features of Photoconductivity of Tl_{1-x}In_{1-x}Sn_xSe₂ Monocrystals at Low Temperatures. *Physics and Chemistry of Solid State.*, 20(1), 50-55 [in English].

44. Makhnovets, H.V., Myronchuk, H.L., Parasiuk, O.V. (2016). Optychni vlastyvosti krystaliv systemy $Tl_{1-x}Ga_{1-x}Sn_xSe_2$ (x=0,05; 0,1) [Optical properties of crystals of the Tl1-xGa1-xSnxSe2 system (x = 0.05; 0.1)]. *Scientific Bulletin of Chernivtsi University: Coll. Science. works: Chemistry. – Naukovyi visnyk Chernivetskoho universytetu: Zb. nauk. prats.: Khimiia.* Chernivtsi: Chernivetskyi natsionalnyi universytet, 781, 75-80 [in Ukrainian].

45. Zamurueva, O.V., Myronchuk, G.L., Ozga, K., Szota, M., El-Naggar, A.M., Albassam, A.A., Parasyuk, O.V., Piskachm L.V., Kitykm I.V. (2015). Transport phenomena in the single crystals $Tl_{1-x}In_{1-x}Ge_xSe_2$ (x=0.1, 0.2). *Archives of Metallurgy and Materials*. 60(3), 2025-2028 [in English].

46. Myronchuk, G.L., Danylchuk, S.P., Zamurueva, O.V., Piskach, L.V., Kityk, I.V., Piasecki, M.V., Tsisar, O.V. (2019). Specific Features of Photoconductivity of $Tl_{1-x}In_{1-x}Sn_xSe_2$ Monocrystals at Low Temperatures. *Fizyka i khimiia tverdoho tila*. 20(1), 50-55 [in English].