THE CHARACTERISTICS OF THE CRYSTAL STRUCTURE OF THE AG(СU)2CDHF3S8 SULFIDES
DOI:
https://doi.org/10.32782/pcsd-2022-3-11Keywords:
crystal structure, sulfides, and unit cellAbstract
The work has been devoted to study the peculiarities of the crystal structure of the Ag(Cu)2CdHf3S8 new quaternary sulfides as prospective materials that may belong to the stuff with low thermal conductivity. The synthesis of samples has been conducted in quartz vacuumed (10- 2 Pa) ampoules in muffle furnace with software control of technological processes. The semiconductor-pure elements were used for obtaining samples. In order to study phase composition and determine the crystal structure of the obtained samples, we have recorded diffractograms of the samples using DRON 4-13. The crustal structure was determined with using Ritveld’s method. Further, it has been visualized with VESTA program. The crystal structure of the obtained samples belongs to the MgAl2O4 structure type (SG Fd-3m, Pearson symbol cF56) with cubic symmetry. The structure of these compounds is based on the three-layer close packing of sulfur atoms in which the voids are filled with Ag, Cu, Cd i Hf atoms. Moreover, the tetrahedral voids are packed to 1/8, and the octahedral voids – to ½. The mix [Cd:Hf] (~1:3) is located in the site 16d and has octahedral surrounding with S atoms and Ag (Cu) atoms fill the tetrahedral site 8a formed by four S atoms. To transit from the Ag2CdHf3S8 crystal structure to Cu2CdHf3S8, the lattice parameters decrease due to the decrease in the atomic radius of Cu, which causes an increase in distortion in the octahedral environment. At the same time, the volume of the tetrahedron increases proportionally without causing distortion in the polyhedron. In general, the crystal structure of Ag(Cu)2CdHf3S8 sulfides indicates that the phases are interesting and promising, as they contain the transition metal Cd and the f-element Hf, which can significantly change their functionality.
References
He, Y., Day, T., Zhang, T., Liu, H., Shi, X., Chen, L. Snyder, G. High thermoelectric performance in non-toxic earthabundant copper sulfide. Adv. Mater. 2014. 26. P. 3974-3978. doi:10.1002/adma.201400515
Ang, R., Khan, A., Tsujii, N., Takai, K., Nakamura, R., Mori, T. Thermoelectricity Generation and Electron-Magnon Scattering in a Natural Chalcopyrite Mineral from a Deep-Sea Hydrothermal Vent. Angew. Chemie – Int. Ed. 2015. 54. P. 12909-12913. doi:10.1002/anie.201505517
Barbier T., Berthebaud D., Frésard, R., Lebedev, O., Guilmeau, E., Eyert, V., Maignan, A. Structural and thermoelectric properties of n-type isocubanite CuFe2S3. Inorg. Chem. Front. 2017. 4. P. 424-432. doi:10.1039/c6qi00510a
Bourgès, C., Bouyrie, Y., Supka, A., Al Rahal Al Orabi, R., Lemoine, P., Lebedev, O., Ohta, M., Suekuni, K., Nassif, V., Hardy, V., Daou, R., Miyazaki, Y., Fornari, M., Guilmeau, E. High-Performance Thermoelectric Bulk Colusite by Process Controlled Structural Disordering. J. Am. Chem. Soc. 2018. 140. Р. 2186-2195. doi:10.1021/jacs.7b11224
Pavan Kumar, V., Barbier, T., Caignaert, V., Raveau, B., Daou, R., Malaman, B., Le Caër, G., Lemoine, P., Guilmeau, E. Copper Hyper-Stoichiometry: The Key for the Optimization of Thermoelectric Properties in Stannoidite Cu8+xFe3-xSn2S12. J. Phys. Chem. C. 2017. 121. Р. 16454-16461. doi:10.1021/acs.jpcc.7b02068
Chetty, R., Bali, A., Mallik R. Tetrahedrites as thermoelectric materials: An overview. J. Mater. Chem. C. 2015. 3. Р. 12364-12378. doi:10.1039/c5tc02537k
Fan, Y., Wang, G., Wang, R., Zhang, B., Shen, X., Jiang, P., Zhang, X., Shuang Gu, H., Lu, X., Yuan Zhou, X. Enhanced thermoelectric properties of p-type argyrodites Cu8GeS6 through Cu vacancy. J. Alloys Compd. 2020. 822. Р. 153665. doi:10.1016/j.jallcom.2020.153665
Zhang, R., Gucci, F. Zhu, H., Chen, K., Reece, M. Data-Driven Design of Ecofriendly Thermoelectric High-Entropy Sulfides. Inorg. Chem. 2018. 57. Р. 13027-13033. doi:org/10.1021/acs.inorgchem.8b02379
Pavan Kumar, V., Paradis-Fortin, L., Lemoine, P., Caignaert, V., Raveau, B. Malaman, B., Le Caër, G., Cordier, S. Guilmeau, E. Designing a Thermoelectric Copper-Rich Sulfide from a Natural Mineral: Synthetic Germanite Cu22Fe8Ge4S32, Inorg. Chem. 2010. 56. Р. 13376-13381. doi:org/10.1021/acs.inorgchem.7b02128
Bourgès, C., Pavan Kumar, V., Nagai, H., Miyazaki, Y., Raveau, B., Guilmeau, E. Role of cobalt for titanium substitution on the thermoelectric properties of the thiospinel CuTi2S4. J. Alloys Compd. 2019. 781. Р. 1169-1174. doi:10.1016/j.jallcom.2018.12.102
Strick, G., Eulenberger, G., Hahn, H. Über einige quaternäre Chalkogenide mit Spinellstruktur, ZAAC. J. Inorg. Gen. Chem. 1968. 357. Р. 338-344. doi:10.1002/zaac.19683570421
Snyder, J., Caillat, T., Fleurial, J. Thermoelectric properties of chalcogenides with the spinel structure. Mater. Res. Innov. 2001. 5. Р. 67-73. doi:10.1007/s100190100133
Cherniushok, O., Smitiukh, O., Tobola, J., Knura, R., Marchuk, O., Parashchuk, T., Wojciechowski, K. Crystal Structure and Thermoelectric Properties of Novel Quaternary Cu2MHf3S8 (M – Mn, Fe, Co, and Ni) Thiospinels with Low Thermal Conductivity, Chemistry of Materials. 2022. 34(5). Р. 2146-2160. doi:10.1021/acs.chemmater.1c03593
Kariya, F., Ebina, K., Hasegawa, K., Koshimizu, K., Wuritunasitu, B. Hondou, K., Ebisu, S., Nagata, S. Magnetic properties of the spinel-type Cu(Cr1 – x Hfx)2S4. J. Solid State Chem. 2009. 182. Р. 2018-2023. doi:10.1016/j.jssc.2009.05.012
Chauhan, M., Reddy, K., Gopinath, C., Deka, S. Copper Cobalt Sulfide Nanosheets Realizing a Promising Electrocatalytic Oxygen Evolution Reaction. ACS Catal. 2017. 7. Р. 5871-5879. doi:10.1021/acscatal.7b01831
Matsumoto, N., Hagino, T., Taniguchi, K., Chikazawa, S., Nagata S. Electrical and magnetic properties of CuTi2S4 and CuZr2S4. Phys. B Condens. Matter. 2000. 284, Р. 1978-1979. doi:10.1016/S0921-4526(99)02946-4
Lang, Y., Pan L., Chen, C. Wang, Y. Thermoelectric Properties of Thiospinel-Type CuCo2S4. J. Electron. Mater. 2019. 48. Р. 4179-4187. doi:10.1007/s11664-019-07182-x
Hashikuni, K., Suekuni, K., Usui, H., Chetty, R., Ohta, M., Kuroki, K., Takabatake, T., Watanabe, K., Ohtaki, M. Thermoelectric Properties and Electronic Structures of CuTi2S4 Thiospinel and Its Derivatives: Structural Design for Spinel-Related Thermoelectric Materials. Inorg. Chem. 2019. 58. Р. 1425-1432. doi:10.1021/acs.inorgchem.8b02955
Grin, Y., Akselrud, L. WinCSD: Software package for crystallographic calculations (Version 4). J. Appl. Cryst. 2014. 47(2). Р. 803-805. doi:10.1107/s1600576714001058
Momma, K., Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst. 2011. 44(6). Р. 1272-1276. doi:10.1107/S0021889811038970
Hill, R., Craig, R., Gibbs, G. Systematics of the spinel structure type. Phys. Chem. Miner. 1979. 4. Р. 317-339. doi:10.1007/BF00307535