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OSCILLATIONS OF THE RESONANT ELASTIC PENDULUM

The purpose of this work is to investigate the peculiarities of oscillations of an elastic gravitational pendulum, which
performs simultaneous coupled oscillations, like a spring and a mathematical pendulum, with a resonant frequency ratio
of these oscillations (2:1). Determine the influence of initial conditions on the formation of stable periodic oscillation
modes. Investigate the process of energy transfer from one subsystem to another.

On the basis of Lagrangian mechanics, neglecting the damping effect, the equations of motion of the pendulum were
obtained and the numerical solutions were investigated using computer simulation. It was established that in such a system
there is a periodic process of transfer of vibrational energy from one subsystem to another. It is shown that the amount
of energy transferred and the period of this process depend on the initial conditions. The following initial conditions
were found, under which complete energy transfer occurs, as well as conditions under which there is no influence of one
subsystem on another.

The novelty of this work lies in the fact that for the first time a map of stable modes of oscillations is constructed,
reflecting their evolution depending on the initial conditions of the oscillating system. Based on this oscillation map, it is
possible to predict the main parameters of pendulum oscillations under arbitrary initial conditions. Visual and graphic
interpretation of the solutions obtained in this work can be used in the study of other physical processes. The computer
model is published and can be used in the educational process.

Key words: elastic pendulum, Lagrange equation, Lisage figures, resonant oscillations.
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PE3OHAHCHI KOJIUBAHHS MPYKHOTO TPABITAIIIMHOTO MASITHUKA

Mema danoi pobomu — docnioumu 0codOnUBOCMI KOTUBAHD NPYICHO2O0 2PABIMAYIIHO2O0 MASMHUKA, SKUL 301lICHIOE
OOHOYACHO 36 A3AHI KOMUBAHHA, SK NPYICUHHUL MdA MAMEMAMUYHUL MASMHUKY, NPU DE3OHAHCHOMY CHIGBIOHOWIEHH]
yacmom yux Koaueams (2:1). Busnauumu eniue noyamrosux ymos Ha ymeopeHHs cmabinbHux nepiooutHux Moo Konuganbs.
Hocnioumu npoyec nepeoaui enepeii 3 00HieT niocucmemu 8 iHuLy.

Ha ocnogi mexanixu Jlazpanoica, nexmyrouu eghekmom 3amyxanus, OMmpumMano pigHAHHA pYXy MAAMHUKA MA O0CTI0NHCEHO
YUCNIOBI PO36 A3KU 3 OONOMO20I0 KOMN 1omepHo20 Modenioganns. Bemanoeneno, wo y maxii cucmemi 8iobyeacmvcs
nepioouunull npoyec nepeoadi emepeii Konugamnsv 3 oowiei niocucmemu 6 inwy. Ioxasano, wo eenuyuna emepeii, ska
nepeoaemsvcs ma nepiod Ybo2o NPOYecy 3aneAHCums 6i0 NOYAMKOBUX YMO8. 3Hatideno Mmaki noYamKosi yMosu, npu sSIKux
8I00Y8aAEMbCSL NOBHA Nepedaya eHepeii, a MaKo’C YMO8U, NPu AKUX GIOCYMHIL NU6 OOHIET niocucmemu Ha iHuLY.

Hosuszna danoi pobomu nonseae y momy, wo enepuie nodyoosana Kapma cmadiibHux Mo0 KOIUEaHb, Wo idodpaicae
iX egomoyito y 3aNeHCHOCMI 6i0 NOYAMKOBUX YMO8 KOonueHoi cucmemu. Ha ocnogi yiei xapmu KolueaHb MOXNCHA
CHPOHO3Y8aMYU OCHOGHI Napamempu KOIUBAHb MAAMHUKA NpU O0BINbHUX NOYAmKOGux ymoeax. Haensaono-zpagiuna
iHmepnpemayia po3e’s3Kie, OMpuUManux y OaHiti pooomi, Moxce SUKOPUCHIOBY8AMUCL, NPU BUBYEHHT THUWUX Qi3UUHUX
npoyecie. Komn tlomepna mooens onyonixogana 3 6IOKpumum KoOOM i MOJice 6UKOPUCIOBYBAMUCH Y HABYATbHOM) HPOYeECL.

Kntouosi cnosa: npysicuiil epasimayitinuil Masmuux, pisusauus Jlaepanoica, gicypu Jlicaxcy, pe3oHancHi KOTUBAKHS.

1. Introduction resonant oscillations with periodic energy transfer

An elastic gravitational pendulum is an example  from one subsystem to another. It was established
of nonlinearly coupled oscillating systems. Reso-  that unlike linearly coupled oscillating systems (for
nant oscillations of this mechanical system are the = example, two mathematical pendulums connected
subject of modern scientific researches because by a spring), where the depth and speed of energy
of their similarity to other complex oscillations transfer depends on the system parameters, in this
that are often encountered in physics (AnmomuH,  problem these values are determined by the initial
Sxosnes, 2016). conditions.

The first scientific study of an elastic gravita- After the first publication, studies of the oscilla-
tional pendulum was carried out in the work of  tions of an elastic pendulum were carried out both
Witt and Gorelik (Burt, Topenuk, 1993). In this  theoretically (Olsson, 1976; Anisin, Davidovic,
work, a system of Lagrange equations in a polar  Babovic et al, 1993; Christensen, 2004; Lai, 1984;
coordinate system was obtained, the analytical  Carretero-Gonzalez, Nunez-Yepez, Salas-Brito,
solutions of which are unknown. In the absence of  1994; Sousa, Marcus, Caldas, 2018) and experi-
the possibility of computer modeling, the authors  mentally (Cross, 2017).
performed analytical studies of the system of dif- The analysis of the scientific literature showed
ferential equations in the approximation of small  that the conditions for the occurrence of cer-
fluctuations. The paper assumes the existence of tain modes of oscillation remain insufficiently
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researched, and the dependence of the period and
magnitude of energy transfer on the initial condi-
tions remains unknown.

In this paper on the basis of numerical solu-
tions of the equation of motion [10], the peculi-
arities of the elastic pendulum oscillations were
studied in the condition of resonance, when the
frequency of the mathematical pendulum is twice
less than the frequency of the spring pendulum.
It is shown that the energy which is periodically
transmitted from one oscillatory subsystem to
another and the period of this process depend
on the initial conditions. The dependence of the
period of energy exchange between subsystems
and its value on the energy of each subsystem is
determined. The stable modes of oscillations and
the features of their modification by changing the
initial conditions are investigated. It is shown that
for small oscillations, in the case when the energy
of the gravitational pendulum is twice bigger than
the energy of the spring pendulum, each mode of
oscillation comes into a stable state in which there
is no energy transmission between subsystems.
On the coordinate plane of the initial conditions,
an oscillation mode map is made, which demon-
strates lines of several simple oscillation modes.
The period of energy transmission between sub-
systems is constant along these lines.

2. Lagrangian and equations of motion

Consider a pendulum consisting of a mass m
that is hanged on a spring (rubber thread). The
length of unstretched spring is /, and £ is its rigid-
ity. The mass m satisfies the ratio

L _4m

.k (1)

that provides the resonance ratio of the frequen-
cies of the gravitational and spring pendulums. that
provides the resonance ratio of the gravitational
and spring pendulum frequencies. This expres-
sion is useless for the calculation of the required
mass because rubber thread length depends on the
m. Thus, I=[,+Al and Al=mg/k from (1) we
obtain a useful expression for the creation resonant
pendulum.

i a

0

The length of the spring r(t) and the angle of
deviation of the pendulum from the equilibrium
position ¢(t) are chosen as generalized coordinates.
The Lagrange function of the elastic pendulum is

12

2

mr(t) .

mr(t) ¢ k(r(1)=4)
2 2

L= +mgr(t)cosg, (3)

where the first and second terms are the kinetic
energy of the translational and rotational motions
of the mass m, the third and fourth terms are the
spring and the gravitational potential energies. The
system of Lagrange equations is the following

mi (1) —mr(p(t)2 + k(r(t)—lo)— mg cos(e(t)) =0
r(1)§(2)+27(1)p(t)+ gsing(z)=0

From equations (3) one can see, that gravita-
tional and spring oscillations are coupled in a com-
plicated way. Analytical solutions of the system of
the differential equations (4) are unknown. There-
fore, the numerical solutions of the problem are
investigated in the next section.

3. Results of computer modelling

For the study of the resonant elastic pendulum
oscillations, a computer model was created in
the Wolfram Mathematica and published on the
Wolfram Demonstrations Project website (Holo-
vatsky, Holovatska, 2019). This program allows
changing the initial conditions in a wide range
and studying oscillations of the pendulum. Fig. 1
demonstrates that the amplitude decrease in the
gravitational pendulum oscillations is accom-
panied by the amplitude increase in the spring
pendulum oscillations. Thus, the total energy of
the system remains unchanged with the friction
absence. As a result, the graphs ¢(¢) and Ar(r)
have the form of modulated functions that are
similar to the effect of beating frequencies and
oscillations of linearly coupled systems. Though,
for two linear coupled oscillatory systems, the
frequency of energy exchange between subsys-
tems is determined by the system parameters and
does not depend on the initial conditions. In the
case of an elastic gravitational pendulum, the
period of energy exchange can be changed in a
wide range by the initial conditions. For exam-
ple, a decrease in the initial amplitudes of oscilla-
tions leads to an increase in the period of energy
transfer (Fig. 1).

Studies have shown that the value of the trans-
ferred energy between the coupled subsystems
(AE) at the small initial deviations is determined
by the equation

“4)

AE =|E§ —2E

; )
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Fig. 1. Oscillations of a resonant pendulum: a) ¢(0)=16.9°, Ar (0) =2.7cm ; b) ¢(0)=8.3°, Ar(O) =-0.8cm .

where E¢ :mg[l—cosm(O)]r(O) ,

EY =k[Ar(0)]’ /2 — the energies of the gravita-
tlonal and spring pendulums at the initial moment
of time. As it follows from (5), there are such initial
conditions in which there is no energy exchange
between subsystems and oscillations of pendulums
occur independently. Since, the spring pendulum
initial energy can be provided both by tension
(Ar(0)>0) and compression (Ar(0)<0) of the
spring, two types of such oscillations are possible
(A and B, Fig. 2).

When changing the initial deviations of the pen-
dulum, there are various stable periodic trajecto-
ries of the pendulum oscillations, which are called
modes. The existence of stable modes is explained
by the fact that when the period of energy exchange
becomes a multiple of the period of the gravita-
tional pendulum oscillations (7=N-T o) the system
returns to the same state that was in the beginning,
and hence the trajectory will repeat. For the mode
depicted on Fig. 1a the period of energy exchange
T=12¢ (T2 c, N=0) and on Fig. 1b T =26¢
(T,;=2 ¢, N=13). Each of these modes can exist at

different values of the initial conditions. In Fig. 3
solid lines show the initial conditions of several
oscillation modes. The period of energy transmis-
sion between subsystems is constant along these
oscillation modes lines. On the inserts of Fig. 3
one can see trajectories, that are typical for these
modes.

The simplest oscillation modes are observed at
high energies, since then the energy transfer period
is small and therefore contains a small number of
the gravitational pendulum oscillations (N).

The blue dashed lines in Fig. 3 show stable peri-
odic oscillating states A and B of the pendulum.
The lines of all modes cross one of the dashed lines

13

B

Fig. 2. Stable states of pendulum (AE =0)

A or B, so each oscillation mode can be in one of
these states. Letter “a” or “b” in the name of the
mode depict this fact. So, number N will denote
the oscillation modes, and the Latin letters — their
modifications. For example 2a, 2b, 3a, 3b,.... The
Fig. 3 shows only the lines of the initial conditions
of the pendulum, which correspond to the modes
of oscillations with N <6. The trajectory of oscil-
lating modes Na and Nb are mirror symmetric to
each other.

The mode lines of the type Na are monotonic
functions but mode lines of the type Nb are non-
monotonic functions. The lines of different modes
characterized by the same number N converge
asymptotically with the increase of the initial angle
of the pendulum. Thus a region with a high density
of lines is formed. The red dashed line in Fig. 3
divides the map of the pendulum's initial condi-
tion on the regions oscillation A and B types. The
region near the red line is the region of initial con-
ditions where the oscillations of the pendulum are
unstable, and a small change in the initial devia-
tions of the pendulum causes a large change in the
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period of exchange energy and the trajectory of the
pendulum.

Beside the described modes Na or Nb there are
such periodic modes of oscillation in which sub-
systems exchange energy several times until the
pendulum returns to its original state. For exam-
ple, in the mode 3a2 subsystems exchange energy
twice, and in the mode 4a3 — thrice. The energy
transfer period for these modes is equal to 3/2 T
and 4/3-T o respectively.

The dependence energy transfer period on the
initial angle @(0) at the different fixed values of
Ar(0) is shown in Fig. 4. The energy transfer period
at Ar(0)<0 monotonically decreases as the initial
angle of the pendulum increases. The dependence
of the energy transfer period on the initial angle of
the pendulum at Ar(0)>0 has a non-monotonic
form with a discontinuity at the point belonging to
the bifurcation line.

In Fig. 5 on the example of mod 4a it is shown
the peculiarities of the trajectories and parameters
of pendulum oscillations when changing the initial
conditions along the mode line (initial oscillation
conditions, corresponding to points a, b, c, d, e,
Fig. 3). For points b and d of 4a mode not only
energy exchange and full energy are equal (Fig. 5b
and Fig. 5d) but also pendulum movements have

14
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Fig. 3. Distribution of oscillating modes on the plane of the pendulum initial deviations — solid lines.
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Fig. 4. Dependences energy transfer period
on initial angle ¢ (0) at Ar(0)=-10; 0; 10cm

the same trajectories. The difference is only in the
initial phase of oscillation. In the first case, at the
initial moment of time, the spring pendulum energy
is transmitted to the gravitational one, whereas in
the second case, it is vice versa. Ratio £ / Ef =2
in (3) is a consequence of frequencies ratio. But
Fig. 3 shows this ratio is performed for states A and
B only at small amplitude of the gravitational pen-
dulum (¢ <15°). This is due to the dependence of
gravitation pendulum frequency on an amplitude
of oscillations and due to the approximate division
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Fig. 5. Mode 4a at different initial conditions (depicted on the Fig. 3 by circles a, b, ¢, d, e)

of the full energy into the energies of the subsys-
tems. There is a part of the energy that belongs to
both subsystems, which could be called the inter-
action energy (Anisin, Davidovic, Babovic, 1993).

The phase trajectories of the pendulum oscil-
lations are depicted on Fig. 6. The phase trajec-
tories of pendulum oscillations in states A and B
of 4a and 4b modes are similar to trajectories of

15

non-interacting subsystems. The phase trajectory
of spring oscillations with energy transfer (Fig. 6¢)
consist of several circles that are internally tangent.

SUMMARY

Thus, it was found some peculiarities of the
elastic gravitational pendulum oscillations as the
result of the motion equation numerical solution.
Different oscillation modes are systematized and
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Fig. 6. Phase trajectories: (a) — 4a mode (state A), (b) — 4b mode (state B), (c) — 4b mode
(with energy transfer)

their coupling with the initial conditions is estab-
lished. The map of the initial conditions of oscil-
lations of an elastic pendulum has been created,
which allows to estimate the period of energy trans-
fer and its magnitude based on the initial value of
the tension and deflection angle of the pendulum. It
was shown that for each oscillating mode a state (A
or B) exists in which there is no energy exchange

between subsystems that carry out independent
harmonic oscillations.

It was shown that an increase in the total energy
of a pendulum leads to a decrease in the period of
energy exchange between subsystems.

The computer model is published with open
code in Wolfram Language [10] and can be used in
the educational process.
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