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PROBLEMS OF MODELING A CRITICAL THERMONUCLEAR PROCESSES

A brief analysis of the problem of modeling critical thermonuclear processes is presented. Attention was focused on two
types of processes. First is determined by the generation of thermonuclear reactions in stationary regime. This problem
is main for the creation thermonuclear reaction and has Earth value. Second is lifetime of stationary phase. This problem
is main for lifetime of stars and have Universe value. The first refers to the problem of the threshold for the occurrence
of thermonuclear reactions. Here, Lawson's criterion is analyzed and its significance in the problem of thermonuclear
reactor construction is shown. Deuterium-deuteriun and deuterium-tritium reactions are analysed. Various mechanisms
of modeling the generation and realization of these reactions, including magnetic fields, are discussed. The well-founded
concepts of muon catalysis and its role in the generation of thermonuclear reactions are also given. The issue of the influence
of the shape and symmetry of deuterium and tritium nuclei on the threshold for the generation of thermonuclear reactions
and its contribution to the Lawson criterion is analyzed. The second part refers to astrophysics. The Schonberg-
Chandrasekhar criterion is formulated. The Schonberg -Chandrasekhar theory of the residence time on the main sequence
of the Hertzsprung-Ressel diagram, which is general for all stars of the main sequence of the diagram, is analyzed. The
Schonberg-Chandrasekhar limit and its dependence on the nature of stars are analyzed: isothermal, polytropic, etc. The
problems of homogeneity and heterogeneity of stars and its influence on the Schonberg-Chandrasekhar limit are observed
too. Its role in the development of modern astrophysics is shown. Prospects for the use of the Schoenberg-Chandrasekhar
limit for nuclei other than hydrogen and helium are also discussed.

Key words: thermonuclear processes, Lawson’s criterion, Schoenberg-Chandrasekhar limit, deuterium, tritium,
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HNPOBJEMU MOAEJIOBAHHA KPUTHUYHUX TEPMOAAEPHUX ITPOLECIB

Ilooano xopomxutl ananiz npodemi MOOENIOBAHHI KPUMUUHUX MEPMOAOEPHUX npoyecis. AKyenmyemscs yeaza na
06ox munax npoyecig. Ilepuiuii 6U3HAUAEMbCA YMOBAMU GUHUKHEHHS MA 2eHepayii mepmosoepHux peaxyii 6 cmayio-
Haphomy pedcumi. Ll npobrema € 0cHO8HOW0 Ol CMBOPEHHS MEPMOAOEPHUX PeaKmopia i Mae 3emue 3nauenns. [py-
2utl nos'sI3anutl 3 4acom scumms cmayionaproi gazu mepmosdeproeo komia. Ls npobrema € ocHosHoW0 015 dcumms
3IpoK 1 mac écenencoke 3nauenns. llepwa gionocumoscs 00 npobiemu nopozy 6UHUKHEHHA ma 2eHepayii mepmosoep-
HUX peakyill i nog’azana 3 nody0oeor mepmosioepnux peaxmopis. [Ipoananizosano xpumepiti Jloycona ma nokasarno
11020 3HAYEHHS 6 NPOOIEMI CINBOPEHHS MEPMOSOEPHUX peakmopis. Budineno ma npoananizosaro oeimepiti-oelimepiegy
ma detimepiti-mpumiegy peaxyii. 062080pHOIOMbCA PI3HI MEXAHIZMU MOOETIOBAHHSA 2eHepayii ma peanizayii yux peaxyi,
Y moMy yucii 3a 00NOMO2010 MACHIMHUX NONIG. [{aHO OCHOBHI NOHAMMSA MIOOHHO20 KAMANI3y Ma U020 POb  GUHUKHEHHI
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mepmosideprux peaxyii. I[Ipoananizoeano numanus npo enius popmu ma cumempii s0ep oeiimepiio ma mpumiio Ha
nopie eenepayii mepmosdepuux peakyiii i eHecox y kpumepii Jloycona. Jpyea uacmuna ionocumuvcsi 00 acmpoqhizu-
ku. Chopmynvosarno kpumepiii Lllenbepea-Yanopacexapa. Ilpoananizosarno meopiio llenbepea-Yanopacexapa npo uac
nepedy8anHs 3ipKu Ha 207106Hil nocaidosnocmi diaepamu I epywnpynea-Peccens, axa € 3a2aibHO 015 6CIX 3IPOK 20106~
HOi nocrioosnocmi diacpamu. Ilpoananizosano mexcy Lllendepea-Yanopacexapa ma ii 3anexqcHicms 8i0 npupoou 3ipox.
Toxkaszano posutupenns meopii [llonbepea-Yanopacexapa na nonimponui npoyecu ma HeoOHopioni cucmemu. Pozenamny-
mo npoonemu 00HOPIOHOCMI ma HeoOHOPIOHOCHI 3ipok ma ii enaus Ha medxcy Lllenbepea-Yanopacekapa. [lokasano io2o
pOonb Y po3eumky cyuacroi acmpoghizuxu. Taxooe 0b206oproiomscs nepcnekmusu gukopucmanns mexci Lllenbepea-Yan-

opacekapa 05 si0ep, SIOMIHHUX 8I0 600HIO MA 2eniio.

Kntouosi cnosa: mepmosioepui npoyecu, kpumepiii Jloycona, mexca llenbepea-Yanopacexapa, detimepiii, mpumitl,

MOOENOBAHHS.

Introduction. A brief analysis of the problem
of modeling critical thermonuclear processes is
presented. Attention was focused on two types of
processes.

First is determined by the generation of
generation of thermonuclear reactions in stationary
regime (Abu-Shavareb, 2022; Beringer, 2012;
Frank, 1947; Kelly, 2021; Lawson, 1957; Muon,
2024; Petkov, 2012; Tipton, 2015; Trokhimchuck,
2024; Wesson, 2004). This problem is main for the
creation thermonuclearreaction and has Earth value.
Second is lifetime of stationary phase (Andrievsky,
2007; Chandrasekhar, 1938; Choudhuri, 2023;
Schonberg, 1942; Trokhimchuck, 2024). This
problem is main for lifetime of stars and have
Universe value.

The first refers to the problem of the threshold
for the occurrence of thermonuclear reactions.
Here, Lawson's criterion is analyzed and its
significance in the problem of thermonuclear reactor
construction is shown. Deuterium-deuteriun and
deuterium-tritium reactions are analyzed. Various
mechanisms of modeling the generation and
realization of these reactions, including magnetic
fields, are discussed. The well-founded concepts
of muon catalysis and its role in the generation of
thermonuclear reactions are also given. The issue
of the influence of the shape and symmetry of
deuterium and tritium nuclei on the threshold for
the generation of thermonuclear reactions and its
contribution to the Lawson criterion is analyzed
(Abu-Shavareb, 2022; Lawson, 1942; Petkov,
2012; Tipton, 2015; Trokhimchuck, 2024).

The second part refers to astrophysics. The
Schonberg-Chandrasekhar criterion is formulated
(Petkow, 2012). The Schonberg-Chandrasekhar
theory of the residence time on the main sequence
of the Hertzsprung-Ressel diagram, which is
general for all stars of the main sequence of the
diagram, is analyzed (Schonberg, 1942; Tipton,
2015). The Schonberg-Chandrasekhar limit and
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its dependence on the nature of stars are analyzed:
isothermal, polytropic, etc. (Trokhimchuck, 2024;
Trokhimchuck, 2024; Wesson, 2004). The problems
of homogeneity and heterogeneity of stars and its
influemce on the The Schonberg-Chandrasekhar
limit are observed too (Trokhimchuck, 2024;
Trokhimchuck, 2024; Wesson, 2004). Its role
in the development of modern astrophysics is
shown. Prospects for the use of the Schoenberg-
Chandrasekhar limit for nuclei other than hydrogen
and helium are also discussed.

Lawson’s criterion and thermonuclear reactions

Calculations of the power balance in
thermonuclear reactors operating under various
idealized conditions are given by Lawson
(Lawson, 1942; Trokhimchuck, 2024). Two classes
of reactors are considered: first, self-sustaining
systems in which the charged reaction products are
trapped and, secondly, pulsed systems in which the
charged reaction products escape so that energy
must be supplied continuously during the pulse.
It is found that not only must the temperature be
sufficiently high, but also the reaction must be
sustained long enough for a definite fraction of the
fuel to be burnt.

Main thermonuclear reaction are reactions
between hydrogen isotopes: deuterium
deuterium, tritium — deuterium. This reactions have
little crossectins ~102 barns (Abu-Shavareb,
2022; Lawson, 1942; Petkov, 2012; Tipton, 2015;
Trokhimchuck, 2024; Wesson, 2004).

The energy relased per unit time and volume by
thermonuclear reactions in a hot gas is given by
(Lawson, 1942; Trokhimchuck, 2024-2)

P

reac

=nnyo(T)E .

(1)
where 7, and n, are the number densties of the
nuclej of thr first and second kinds, and {vs(T)) is
the product of the relative velocities of the nuclei
and the reaction cross-section averaged over the
Maxvellian velocity distribution corresponding to
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the temperature 7, and F is the energy released
by one reaction.

For D—D reaction this formula may be represented
as (Lawson, 1942; Trokhimchuck, 2024-2)

p Ly
2

reac

(vo(T)E.

)
Energy can be lost from the hot gas in two
ways, by radiation and by conduction. The power

radiated per unite voloume in hydrogen is given as
(Lawson, 1942; Trokhimchuck, 2024-2)
Py =1.4-10%2°T" watts .cp?. 3)

Let us give an example of systems in which
reaction products are retained. The orders of
magnitude involved, the slowing down range
of bthe charged reaction products in a gas
at 10° degrees and 10* atmospheres pressure
(=310 nuctei/ mg) is on the order of kilometre.
The range of neutrons is hundreds of kilometres
(Lawson, 1942; Trokhimchuck, 2024).

For systems in which the reaction products
escape the parameter R was introduced; this is ratio
of the energy realized in the hot gas to the energy
supplied. Now the energy realized by the reraction
appears as heat generated in the walls of apparatus,
and thus has to be converted to electrical, mechanical
or chemical energy before it can be fed back into the
gas. If n is the efficiency with which is can be done,
then condition for a system with a net power gain is

n(R+1)>1. 4)

The maximum value of w is about 1/3, so
what R must be greater than 2 (Lawson, 1942;
Trokhimchuck, 2024).

For the our pulsed cycle we have

tP

P”%n%T

R=——"rac _ ___  /7IONKI
tP, + 3nkT P, v’

’ %nsz * nt
where P,

v« and P, are respectively the reacyion
power and radiated p ower per unite volume. The
3nkT term represents the energy required to heat
the gas to a temperature 7. Electron binding energies
are neglected, but the contribution from electrons is
included (this accounts for the factor 3 rather than
3/2) (Lawson, 1942; Trokhimchuck, 2024).

Since P, and P, are are both proportional to
n’, R is a function of the T and s In Fig. 1
curves R against T for various values of 7 are
shown for D — Dreaction assuming that the tritium
formed is also burnt.

Fig. 2 shows similar curvers for T-D reaction

(Lawson, 1942; Trokhimchuck, 2024).

)
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Fig. 1. Variation of R with T
for various values of nt for D — D reaction
(Lawson, 1942; Trokhimchuck, 2024)
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Fig. 2. Variation of R with T
for various values of nt for T — D reaction
(Lawson, 1942; Trokhimchuck, 2024-2)

By equating radiation losses and the volumetric
fusion rates, Lawson estimated the minimum
temperature for the fusion for the deuterium-—
tritium (D-T) reaction (Abu-Shavareb, 2022;
Petkov, 2012; Tipton, 2015; Wesson, 2004)

!D+ T — JHe(3.5MeV) + sn(14.1MeV') (6)

to be 30 million degrees (2.6 kel), and for the
deuterium—deuterium (D-D) reaction

D+ {De — T (1.0MeV )+ {p(3.0MeV) 7
to be 150 million degrees (12.9 kel’).

The confinement time t, measures the rate at
which a system loses energy to its environment. The

faster the rate of loss of energy, P, , the shorter the
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energy confinement time. It is the energy density
W (energy content per unit volume) divided by the
power loss density P, (rate of energy loss per unit
volume)

(8)

For a fusion reactor to operate in steady state,
the fusion plasma must be maintained at a constant
temperature. Thermal energy must therefore be
added at the same rate the plasma loses energy in
order to maintain the fusion conditions. This energy
can be supplied by the fusion reactions themselves,
depending on the reaction type, or by supplying
additional heating through a variety of methods.

For illustration, the Lawson criterion for the
D-T reaction will be derived here, but the same
principle can be applied to other fusion fuels.
It will also be assumed that all species have the
same temperature, that there are no ions present
other than fuel ions (no impurities and no helium
ash), and that D and T are present in the optimal
50-50 mixture.* Ion density then equals electron
density and the energy density of both electrons
and ions together is given by (Abu-Shavareb,
2022; Petkov, 2012; Tipton, 2015; Wesson, 2004)

©))
where 7 is the temperature in electronvolt (eV) and
n 1is the particle density.

The volume rate f (reactions per volume per
time) of fusion reactions is

Tg =

P

loss

W =3nT,

(10)
where o is the fusion cross section, vis the relative
velocity, and ( ) denotes an average over the
Maxwellian velocity distribution at the temperature 7.

The volume rate of heating by fusion is f times
E,, , the energy of the charged fusion products (the
neutrons cannot help to heat the plasma). In the
case of the D-T reaction, £, = 3.5 MeV'.

The Lawson criterion requires that fusion
heating exceeds the losses (Abu-Shavareb, 2022;
Petkov, 2012; Tipton, 2015; Wesson, 2004):

f=nyn, (ov)2 %nz {ov),

fECh 2 l)lms' (1 1)
Substituting in known quantities yields:
(o) B> 2 (12)
Rearranging the equation produces [3-6]:
__1or | 13
n L= E,, [ov) (13)
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The quantity ﬁ is a function of temperature
with an absolute minimum. Replacing the function
with its minimum value provides an absolute
lower limit for the product nt, . This is the Lawson
criterion (Abu-Shavareb, 2022; Petkov, 2012;
Tipton, 2015; Wesson, 2004).

For the deuterium—tritium reaction, the physical
value is at least

nty >1.5-10"

—. (14)
cm

The minimum of the product occurs near
T=26keV.

The Lawson criterion, or minimum value
of (electron density energy confinement time)
required for self-heating, for three fusion reactions
is bepresented in Fig. 3 (Abu-Shavareb, 2022;
Petkov, 2012; Tipton, 2015; Wesson, 2004)

temperature [kev]

1] 1 2

10°

110
10%*

L

¢ 1
temperature [million Kelvin]

10

Fig. 3. The Lawson criterion, or minimum
value of (electron density energy confinement
time) required for self-heating, for three fusion
reactions. For DT, nt_ minimizes near
the temperature 25 keV (300 million kelvins)
(Abu-Shavareb, 2022; Petkov, 2012;
Tipton, 2015; Wesson, 2004)

A still more useful figure of merit is the "triple
product” of density, temperature, and confinement
time, nTr,. For most confinement concepts,
whether inertial, mirror, or toroidal confinement,
the density and temperature can be varied over
a fairly wide range, but the maximum attainable
pressure p is a constant. When such is the case, the
fusion power density is proportional to p><cv>/T?2.
The maximum fusion power available from a given
machine is therefore reached at the temperature 7
where <ov>/T'? is a maximum. By continuation
of the above derivation, the following inequality
is readily obtained (Abu-Shavareb, 2022; Petkov,
2012; Tipton, 2015; Wesson, 2004):



®di3uka Ta ocBiTHI TexHouorii, Bum. 2, 2024

07
E, <GV> '

nTt, > (15)

This quantity is also a function of temperature
with an absolute minimum at a slightly lower
temperature than

For the D-T reaction, the minimum occurs at
T =14 keV. The average <ov> in this temperature
region can be approximated as (Abu-Shavareb,
2022; Petkov, 2012; Tipton, 2015; Wesson, 2004)

(ov)=1.1- 10’2“T2mT, TinkeV  (16)

So the minimum value of the triple product
value at 7= 14 kel is about

nTt,23-10"keV -5 / m’ (3.5-10%K -5 / m*). (17)

This number has not yet been achieved in
any reactor, although the latest generations
of machines have come close. JT-60 reported
1.53x10?" keV-s-m3. For instance, the TFTR has
achieved the densities and energy lifetimes needed
to achieve Lawson at the temperatures it can create,
but it cannot create those temperatures at the same
time. ITER aims to do both (Wesson, 2004).

The fusion triple product condition for three
fusion reactions are represemted in Fig. 4 (Abu-
Shavareb, 2022; Petkov, 2012; Tipton, 2015)

temperature [keV]

m,,m" 10" 10°
o
by
= 1 I
E
L+
= 10%} -
B — R
|."_ 10t -_ 00 1
& — D-Hel
10"
107 10° 10° 10t

temperature [million Eelvin]

Fig. 4. The fusion triple product condition
for three fusion reactions (Abu-Shavareb, 2022;
Petkov, 2012; Tipton, 2015)

As for tokamaks, there is a special motivation
for using the triple product. Empirically, the
energy confinement time 7, is found to be nearly
proportional to n'3/P??3. In an ignited plasma near
the optimum temperature, the heating power P
equals fusion power and therefore is proportional
to n?T2. The triple product scales as
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1
()
nTrt, = (n ,

nr{né . )%]; (18)

T 3.

The triple product is only weakly dependent on
temperature as 7', This makes the triple product
an adequate measure of the efficiency of the
confinement scheme (Abu-Shavareb, 2022; Petkov,
2012; Tipton, 2015). The Lawson criterion applies
to inertial confinement fusion (ICF) (Tipton, 2015)
as well as to magnetic confinement fusion (MCF)
(Petkov, 2012) but in the inertial case it is more
usefully expressed in a different form. A good
approximation for the inertial confinement time is
the time that it takes an ion to travel over a distance
R at its thermal speed

/kT
Vi = ﬁa

where m, denotes mean ionic mass. The inertial
confinement time can thus be approximated as

(19)

R /m,.
TE~7m—R kBiT. (20)

By substitution of the above expression into
relationship (20), we obtain

12 kT

m 12
nt, ~nR T > £, (ov) (21)
From where we get the following formula
12 (k,T)2
nR>-—= . 22
Eo (ov) m,.l/2 2)
or y
nRr > Kl )" (23)

(ea%
This product must be< gzeater than a value
related to the minimum of 7%%/<ov>. The same
requirement is traditionally expressed in terms of
mass density p = <nm>:

pR218/ . (24)

Satisfaction of this criterion at the density of
solid D-T (0.2 g/cm®) would require a laser pulse
of implausibly large energy. Assuming the energy
required scales with the mass of the fusion plasma
(E,.. ~ pR®~ p?), compressing the fuel to 10° or
10* times solid density would reduce the energy
required by a factor of 10° or 10%, bringing it into
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a realistic range. With a compression by 103, the
compressed density will be 200 g/cm?®, and the
compressed radius can be as small as 0.05 mm.
The radius of the fuel before compression would be
0.5 mm. The initial pellet will be perhaps twice as
large since most of the mass will be ablated during
the compression (Petkov, 2012; Tipton, 2015).

The fusion power times density is a good figure
of merit to determine the optimum temperature for
magnetic confinement, but for inertial confinement
the fractional burn-up of the fuel is probably
more useful. The burn-up should be proportional
to the specific reaction rate (n’<ov>) times the
confinement time (which scales as 7°'?) divided
by the particle density n (Abu-Shavareb, 2022;
Petkov, 2012; Tipton, 2015)'

(ov T//
A%

Thus the optimum temperature for inertial
confinement fusion maximises <ov>/7*2, which is
slightly higher than the optimum temperature for
magnetic confinement.

Lawson's analysis is based on the rate of fusion
and loss of energy in a thermalized plasma. There
is a class of fusion machines that do not use
thermalized plasmas but instead directly accelerate
individual ions to the required energies. The best-
known examples are the migma, fusor and polywell
(Abu-Shavareb, 2022; Lawson, 1942; Petkov, 2012;
Tipton, 2015; Trokhimchuck, 2024; Wesson, 2004).

When applied to the fusor, Lawson's analysis is
used as an argument that conduction and radiation
losses are the key impediments to reaching net power.
Fusors use a voltage drop to accelerate and collide
ions, resulting in fusion. The voltage drop is generated
by wire cages, and these cages conduct away particles
(Abu-Shavareb, 2022; Lawson, 1942; Petkov, 2012;
Tipton, 2015; Trokhimchuck, 2024; Wesson, 2004).

Polywells are improvements on this design,
designed to reduce conduction losses by removing
the wire cages which cause them. Regardless, it is
argued that radiation is still a major impediment.

Muon-catalyzed fusion (abbreviated as pCF or
MCEF) is a process allowing nuclear fusion to take
place at temperatures significantly lower than the
temperatures required for thermonuclear fusion, even
at room temperature or lower (Beringer, 2012; Frank,
1947; Kelly, 2021; Muom, 2024). It is one of the few
known ways of catalyzing nuclear fusion reactions.

Muons are unstable subatomic particles which
are similar to electrons but 207 times more
massive. If a muon replaces one of the electrons in

burn-up fraction = (25)
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a hydrogen molecule, the nuclei are consequently
drawn 186 times closer than in a normal molecule,
due to the reduced mass being 186 times the mass of
an electron. When the nuclei move closer together,
the fusion probability increases, to the point where
a significant number of fusion events can happen
at room temperature (Beringer, 2012; Frank, 1947;
Kelly, 2021; Muom, 2024).

Methods for obtaining muons, however, require
far more energy than can be produced by the resulting
fusion reactions. Muons have a mean lifetime of
2.2 us (Beringer, 2012), much longer than many
other subatomic particles but nevertheless far too
brief to allow their useful storage.

To create useful room-temperature muon-
catalyzed fusion, reactors would need a cheap,
efficient muon source and/or a way for each
individual muon to catalyze many more fusion
reactions (Beringer, 2012; Frank, 1947; Kelly,
2021; Petkov, 2012).

From our point of view, the following additional
studies should be conducted for optimal modeling
of efficient thermonuclear reactors: 1. Choose the
conditions of the experiment so that the majority of
mesonuclei participate in synthesis reactions. 2. To
take into account the geometric intersection of
synthesis reactions and to select appropriate nuclei
and the geometry of the experiment for this purpose.
3. More widely apply impulse processes for initial
detonation and obtaining starting conditions for
obtaining the required reaction characteristics.

The Schonberg-Chandrasekhar limit
and astrophysics. In stellar astrophysics, the
Schonberg—Chandrasekhar limit (Chandrasekhar,
1938; Schonberg, 1942; Trokhimchuck, 2024-1)
is the maximum mass of a non-fusing, isothermal
core that can support an enclosing envelope. It is
expressed as the ratio of the core mass to the total
mass of the core and envelope. Estimates of the
limit depend on the models used and the assumed
chemical compositions of the core and envelope;
typical values given are from 0.10 to 0.15 (10%
to 15% of the total stellar mass). This is the
maximum to which a helium-filled core can grow,
and if this limit is exceeded, as can only happen
in massive stars, the core collapses, releasing
energy that causes the outer layers of the star to
expand to become a red giant. It is named after
the astrophysicists Subrahmanyan Chandrasekhar
and Mario Schonberg, who estimated its value in
a 1942 paper (Schonberg, 1942). They estimated
it to be

M

2
] - 0.37(“;},
M He

(26)
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where M is the mass, p is the mean molecular
weight, index ¢ denotes the core, and index e is the
envelope.

The Schonberg-Chandrasekhar limit comes into
play when fusion in a main-sequence star exhausts
the hydrogen at the center of the star. The star then
contracts until hydrogen fuses in a shell surrounding
a helium-rich core, both of which are surrounded
by an envelope consisting primarily of hydrogen.
The core increases in mass as the shell burns its way
outwards through the star. If the star's mass is less than
approximately 1.5 solar masses, the core will become
degenerate before the Schonberg-Chandrasekhar
limit is reached, and, on the other hand, if the mass
is greater than approximately 6 solar masses, the star
leaves the main sequence with a core mass already
greater than the Schonberg-Chandrasekhar limit so
its core is never isothermal before helium fusion. In
the remaining case, where the mass is between 1.5
and 6 solar masses, the core will grow until the limit
is reached, at which point it will contract rapidly until
helium starts to fuse in the core.

In astrophysics, as a rule, stationary processes
take place. This is especially true for stars that are
on the main sequence of the Hertzsprung-Ressel
diagram (Andrievsky, 2007; Chandrasekhar, 1938;
Schonberg, 1942; Trokhimchuck, 2024-1). The
life time of the stars on this diagram, depending
on their spectral class, lasts from several million
years to 100 million years. The stay of the star
on the main sequence lasts until its nuclear fuel —
hydrogen — is exhausted in its superstructure. More
precisely, until, as established by M. Schonberg
and S. Chandrasekhar, a helium nucleus with a
mass of 10-20 percent of the mass of the Sun is
formed in the center of the star.

The time it takes for a star to reach the Schonberg-
Chandrasekhar evolutionary limit (that is, the time it
spends on the leading sequence of the Hertzsprung-
Ressel diagram) is estimated by the formula
(Chandrasekhar, 1938; Trokhimchuck, 2024):

=25
tg~ % = 10" (%) years.
where M is the mass of the star in the masses
of the Sun M., L — the luminosity of the star in
the luminosities of the Sun. Here it is taken into
account that the luminosity of the star is L~ M~°
(Chandrasekhar, 1938; Trokhimchuck, 2024-1)

and that the reserves of thermonuclear energy
are proportional to the total mass of the star. The
final stage of this evolution is the formation of a
red giant or supergiant (Chandrasekhar, 1938;
Trokhimchuck, 2024-1).

The existence of a maximum isothermal core
mass fraction (¢, ), the Schonberg-Chandrasekhar
limit, is one of the ‘classic’ results from the theory
of stellar structure. This limit can be demonstrated
through a simplified composite polytrope model
in which an isothermal core is surrounded by
an n = 1 polytrope envelope. While this model
underestimates g by 25 % in the homogeneous
case, it is accurate to within 5 % in the more
realistic inhomogeneous situation (Beech, 1988).

The Schonberg-Chandrasekhar limit in post-
main-sequence evolution for stars os masses vin
the range 1.4<M / M;<6.0 gives the maximum
pressure that the stellar core can withstand, omce
of the central hydrogen is exhausted (Choudhuri,
2023). It is usually expressed as a quadratic function
of 1/, with o being the ratio of the mean molecular
Weig%t of the core to that of the envelope. Here, we
revisit this vlimit in scenarios where the pressure
balsance equation in the stellar interior b may be
modified, amd in the presemce of small stellar
pressure anisotropy, the might arise due to several
physical phenomena. Using numerical analysis,
we derive a three parameter-dependent master
formula for the limit, and discuss various physical
consequences. As a by-product, in a limiting case of
our formula, wr find that in the standard Newtonian
framework, the Schonberg-Chandrasekhar limit is
best-fit by a polynomial that is linear. Rather than
quadratic, to lowest order in lu (Choudhuri, 2023).

From our point of view, the Schonberg-
Chandrasekhar theory should be extended to
heavier chemical elements and to more short-lived
and long-lived processes.

Conclusions. The problem of generation the
stationary thermonucleas reactions is discussed.

Lawson’s criterion and its application for the
estimation the critical regimes of thermonuclear
reactions are analyzed.

Ways of develop the more widely applications
of Lawson’s criterion are discussed.

Main peculiarities of Schonberg-Chandrasekhar
limit in astrophysics and expansion area of its
applications are observed.
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