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SOME PROBLEMS OF WHITE DWARF MODELLING

Main peculiarities of formulation main principles and criteria of white dwarf theories are analyzed. Short comparative
analysis of main methods of modeling is represented. All these methods are based on the conditions of equilibrium. The role
of A. Eddington, R. Fowler, E. Stoner and S. Chandrasekar researches in the creation this theory is discussed. A. Eddington
proposed to use the Lane-Emden equations to construct the theory of white dwarfs, which allow us to describe processes
in polytropic gas spheres. It is shown that Stoner method, Lane-Emden equations and Einstein equations is based on
the search of equilbrium comditions for sphere or semple to sphere symmetries. The role of the development of theoretical
physics (Fermi-Dirac statistics) in the creation of this theory is shown. It should be noted that thanks to Stoner s research,
the Pauli principle and one of the first applications of Fermi-Dirac statistics for degenerate electronic systems appeared
in the Bohr theory of the atom precisely in the theory of white dwarfs. Main peculiarities of Stoner method and Lane-
Emden equtions are observed. Stoner s method is based on the idea of studying the equilibrium of a star based on energetic
considerations. The Lane-Emden equations were constructed for gaseous spheres with different polytropic indices. It was
Emden’s introduction of thermodynamics into these equations that allowed them to be used in astrophysics. For these
equations, it is necessary to additionally introduce the conditions for the rotation of the star. Einstein’s equation is also
on the one hand a condition of energy equilibrium (effective potential energy equals kinetic energy) for inhomogeneous
systems, and on the other hand it is a generalization of the special theory of relativity to curvilinear geometry. The
generalization of the interval itself is nothing more than a metric of the corresponding space-time. Rotation is included in
the equation from the very beginning. Peculiarities of application methods of general relarivity for modelling white dwarf
structure and processes are analyzed too.

Key words: critical processes, white dwarf, S. Chandrasrekhar, Lane-Emden equation, equilibrium conditions, phase
transformarions, general relativity.
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JAEAKI IPOBJEMU MOJAEJIIOBAHHS BIJIMX KAPJIUKIB

Ipoananizosano ocHo6Hi 0coOIUBOCMI (HOPMYTIOBAHHSL OCHOGHUX NPUHYUNIE | Kpumepiie meopill Oiux Kapiuxis.
Ilooano kopomkuii nOPIGHANbHUL AHANI3 OCHOBHUX Memooie Mmooeniosants. Bci yi memoou 6a3yiomuvcsi HA yM0OBAX
pienosacu. OQbzosopioecmubcs poav docuioxcerv A. Eodinemona, P. @aynepa, E. Cmonepa ma C. Yanopacexapa
y cmeopenHi yiei meopii. A. EOOinemon 3anponotyeas sukopucmosysamu pisHsanns Jleina-Emoena ona nobyoosu meopii
Oinux Kapnuxis, AKi 00360A10Mb ONUCYBAMU NPOYECU 8 NOTimponHux 2azosux cepax. Iloxasano, wjo memoo Cmonepa,
pienanna Jletina-Emoena ma pisuanua EiHuimenina tpyHmy0moscs Ha ROULYKY YMO8 pieHosazu 0s cumempiil cghepu abo
8idpizka 0o cgepu. Ilokazano ponv pozeumxy meopemuynoi Qizuxu (cmamucmuxu Pepmi-Ifipaka) y cmeopenni yiei
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meopii. Cnio 3aznauumu, wo 3a80aKu 0ocuioxcennam Cmonepa 6 meopii amoma bopa came 6 meopii 6inux xapiuxie
3’aeuscs npunyun Ilayni i o0ne 3 nepuux 3acmocyéanv cmamucmuku Qepmi-/lipaxa 01 6UPoONHCEHUX eNeKMPOHHUX
cucmem. Pozenanymo ocnoeni ocobnusocmi memody Cmonepa ma pisusns Jleiina-Emoena. Memoo Cmounepa 6aszyemocs
Ha i0ei 6uBUeHHA DiBHOBA2U 3IPKU HA OCHOBI eHepeemuyHux Mipkyearv. IloOyoosano pisHsanua Jletina-Emoena ons
2a30n00iOHUX KVb 3 PisHUMU nokazHuxamu norimponii. Came 6gedenns Emoenom mepmoounamixu 6 yi pieHAHH
0036071UTI0 BUKOPUCMOBY8AMU ix 8 acmpoizuyi. [ yux pieHaHb He0OXIOHO 000amKO80 88eCHU YMOBU 00EPMAHHS 3IPKU.
Pisuanus Etinuwmerina maxkoxc €, 3 00H020 OOKY, YMOBOI0 eHepeemuyHoi pieHosazu (eghekmuena nomeHyiaibHa eHepeis
00pisHIOE KIHeMUYHIL eHepeii) 015l HeOOHOPIOHUX CUCIEM, d 3 THULO020 — Y3a2albHeHHIM ChneyiaibHol meopii 6iO0HOCHOCMI
HA KPUBOTIHIIHY 2eomempiio. Y3azanbHenHs camozo IHmepeay € e wo iHule, Ik MEMmpUuKa 6i0n08IOH020 NPOCMOPY-4Acy.
Obepmants BKII0YEHO 8 PIBHAHHS 3 camoeo noyamky. IIpoananizoeano ocobaugocmi 3acmocy8ants Memooia 3a2aibHoi
meopii BIOHOCHOCI 01 MOOETIOBAHHA CIMPYKMYPU A RPOYECi8 OLIUX KapIuKis.

Kntouosi cnosa: xkpumuuni npoyecu, 6ini kapruxu, C. Yanopacexap, pisuauus Jletina-Emoena, ymosu pigrosaeu,
¢hazoei nepemeopennsl, 3a2aibHa meopis. GIOHOCHOCMI.

Introduction construct the theory of white dwarfs, which allow

Main peculiarities of formulation main princi-  us to describe processes in polytropic gas spheres.
ples and criteria of white dwarf theories are ana-  This method for white dwarfs was developed
lyzed. Short comparative analysis of main meth- by A. Fowler (Fowler, 2029) and most of all by
ods of modeling is represented. All thes methods  S. Chandrasekhar (Chandrasekhar, 1938).
must be based on the conditions of equilibrium. R. Fowler was the first to draw attention to the
It is shown that Stoner method (Stoner, 1929), use of Fermi-Dirac statistics for the theory of white
Lane-Emden equations (Chandrasekhar, 1938) and  dwarfs (Fawler, 1926). However, the first theory
Einstein equations (Chandrasekhar, 1964) is based ~ for former dwarfs was built by E. Stoner (Stoner,
on the search of equilbrium conditions for sphere ~ 1929). At the heart of his theory he put the varia-
or sample to sphere symmetries. Main peculiari-  tional principle, which he used for total energy. Vio
ties of Stoner method and Lane-Emden equtions  estimated the density and mass of the white dwarf.
are observed. Peculiarities of application methods  This same method was used by S. Chandrasekhar
of general relarivityy for modelling white dwarf  to determine the density of a white dwarf. He built

structure and processes are analyzed too. a more complete theory of a gray dwarf based on
Main concepts of theory of white dwarfs are  the Lane-Emden equations.
discussing (Vavrukh, 2018). The role of A. Edding- It should be noted that all astrophysical models

ton (Eddington, 1926), R. Fowler (1926), E. Stoner  are built based on considerations of equilibrium,
(1929) and S. Chandrasekar (1930) researches in  and are still tied in one way or another to spher-
the creation this theory is discussed. The role of the  ical symmetry. Thus, the Lane-Emden equations
development of theoretical physics (Fermi-Dirac  are derived for the equilibrium conditions of a gas
statistics) in the creation of this theory is shown  sphere taking into account the corresponding poly-
(Stoner, 1924; Fowler, 1926). tropic process. Chandrasekhar separately derived
It should be noted that thanks to Stoner’s this equation for isothermal case too (Chandrase-
research (Stoner, 1924), the Pauli principle and  khar, 1938). However, these equations do not take
one of the first applications of Fermi-Dirac statis-  into account the rotation of the star (Vavrukh,
tics for degenerate electronic systems appeared in ~ 2018). Einstein’s equation is nothing but the equal-
the Bohr theory of the atom precisely in the theory ity of potential (effective) energy, which also takes
of white dwarfs. into account the rotation and kinetic energy (Bar-
A. Eddington, R. Fowler, their student S. Chan-  row, 2007). That is, it is nothing but an extension of
drasekhar, E. Stoner, V. Anderson and others made  the methods of celestial mechanics. All the metrics
the main contribution to the development of the that are in the general theory of relativity, roughly
theory of white dwarfs (Nauenberg, 2008; Vav-  speaking, are derived from the spherical metric
rukh, 2018). (Barrow, 2007). Therefore this metod ass more
A. Eddington initiated the study of white dwarfs  universal for astrophysical applications was recom-
and, in addition, pointed out that the source of the = mended by A. Eddingtom (Chandrasekhar, 1964).
stars’ energy is thermonuclear reactions of hydro- In the theory of degenerate dwarfs by S. Chan-
gen and helium synthesis (Eddington, 1926). He  drasekhar is generalized by constructing mul-
also proposed to use the Lane-Emden equations to  tiparameter and multiphase models that take into
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account the incomplete degeneracy of the elec-
tronic subsystem, the presence of interparticle
interactions, magnetic fields, variable chemical
content along the radius, and axial rotation of
stars (Varukh, 2018). It is allowed to adequately
describe and provide interpretation of modern
observed data. Based on the solution of the equi-
librium equations, the dependence of the structural
and energy characteristics of dwarfs on the param-
eters of the models was determined. The inverse
problem of the theory of degenerate dwarfs was
solved — the determination of the main structural
and thermodynamic parameters of the models
based on data on the masses, radii, and effective
temperatures of observed field dwarfs and dwarfs
in binaries systems (Vavrukh, 2018).

S. Chandrasekhar theory of white dwarfs
was developed in second half of 20" century. In
the works of E. Shatsman, S. Chandrasekhar,
S. Kaplan, R. James L. Mestell, 1. Zeldovich,
and I. Novikov, an elementary theory of cooling
of degenerate dwarfs was constructed (Vavrukh,
2018). The issues of stability in relation to neutron-
ization processes, the effects of the general theory
of relativity and the influence of axial rotation, etc.,
were also considered. Much less attention has been
paid to the generalization of models of the inter-
nal structure of dwarfs. Here it should be noted
the work of E. Solpiter on the equation of state
of the electron-nuclear model at high couplings
with approximate consideration of Coulomb inter-
actions (at T = 0 K) and the work of T. Hamada
and E. Solpiter devoted to the calculation of the
«mass-radiusy ratio for homogeneous two-compo-
nent models corresponding to chemical elements
with a nuclear charge of 2<z<26 based on the
equation of state obtained by E. Solpiter and with
the acceleration of neutronization processes, but
taking into account the effects of the general theory
of relativity (Vavrukh, 2018).

Main results

The existence of a mass limit for white dwarfs
is usually attributed solely to the late astrophysicist
Subrahmanyan Chandrasekhar, and this limit is
named after him (Chandrasekhar, 1938). But as is
often the case, the history of this discovery is more
nuanced.In this note I will show that the existence of
a maximum mass was first establishedby Edmund
C. Stoner, a physicist who began experimental
research under the supervision of Rutherford at
the Cavendish in Cambridge, but later switched to
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theoretical work. Rutherford recommended Stoner
to a position at the Physics department of the Uni-
versity of Leeds where he spent his entire career
(Nauenberg, 2008).

According to G. Cantor, he was “probably the
leading Cavendish-trained theoretical physicist of
the 1920’s, although he learned theory mostly on
his own, and became known for his work on mag-
netism (Nauenberg, 2008). Unfortunately, Stoner
suffered from diabetes and poor health which
restricted his travels, and this may account for the
fact that he did not receive wider recognition for
his achievements. In 1924 Stoner wrote a paper on
the distribution of electrons among atomic levels
(Stoner, 1924). In the preface of the fourth edition
of his classic book, “Atomic Structure and Spectral
Lines”, Arnold Sommerfeld gave special mention
to “ einen grossen Fortschritt [a great advance-
ment]” brought about by Stoner’s analysis, which
then came to the attention of Wolfgang Pauli, and
played and important role in his formulation of
the exclusion principle in quantum physics (Nau-
enberg, 2008). Therefore, it is not surprising that
Stoner’s interest in white dwarfs was aroused by
Ralph H. Fowler’s suggestion (Fowler, 1926) that
the exclusion principle could be applied to solve a
major puzzle, the origin of the extreme high den-
sity of white dwarfs (Nauenberg, 2008), which
could not be explained by classical physics.

At the time, the conventional wisdom was that
the source of internal pressure which maintained all
stars in equilibrium against gravitational collapse
was the internal pressure of the matter compos-
ing the star which had been heated into a gas pre-
sumably, according to Eddington, by “subatomic
energy”’ (Eddington, 1926). But when this supply
of energy is exhausted and the star cools, Fowler
proposed that a new equilibrium would ensue,
even at zero temperature, due to the “degeneracy”
pressure of the electrons caused by the exclusion
principle (Nauenberg, 2008). Fowler, however, did
not attempt to determine the equilibrium proper-
ties of such a star which he regarded as “strictly
analogous to one giant molecule in the ground
state”’. Apparently he was unaware that at the
time, Llewellyn H. Thomas had developed a math-
ematical method to solve this problem in atomic
physics (Nauenberg, 2008). Subsequently, Stoner
developed a novel minimum energy principle to
obtain the equilibrium properties of such dense
stars, and by applying Fowler’s non-relativistic
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equation of state for a degenerate electron gas in
a constant density approximation, he found that
the density increases with the square of the mass
of the star (Nauenberg, 2008). In such a gas the
mean momentum of an electron is proportional to
the cube root of the density, and Wilhem Ander-
son, a privatdozent at Tartu University, Estonia,
who had read Stoner’s paper, noticed that for the
mass of a white dwarf comparable to or higher
than the mass of the Sun, the density calculated
from Stoner’s non-relativistic mass-density rela-
tion implied that the electrons become relativistic
(Nauenberg, 2008). Hence, Anderson concluded
that in this regime, this relation gave “gréblich
falschen Resultaten [gross false results]” for the
properties of a white dwarf. He attemped to extend
the equation of state of a degenerate electron gas
to the relativistic domain, but he gave an incor-
rect formulation which, fortuitously, indicated that
Stoner’s minimum energy principle implied a max-
imum value for the white dwarf mass. Alerted by
Anderson’s paper, Stoner then derived the correct
relativistic equation of statel6, and re-calculated,
in a constant density approximation, the properties
of white dwarfs for arbitrary densities (Nauenberg,
2008). Thus, he obtained, now on solid theoretical
grounds, the surprising result that when the density
approaches infinity, the mass of the star reaches a
maximum value.

Stoner’s method (Nauenberg, 2008) for obtain-
ing the properties of white dwarfs was basedon his
concept that at equilibrium, the sum of the inter-
nal energy and the gravitational energy of the star
should be a minimum for a fixed mass of the star.

Fowler had assumed that the atoms in a white
dwarf were completely ionized, and that the
internal energy and pressure was entirely due to
a degenerate electron gas, while the ions mainly
accounted for the mass of the star. Stoner under-
stood that as the star contracts, the gravitational
energy decreases, and since the density increases,
the internal energy also increases. Hence, the total
energy of the star either decreases or increases dur-
ing the contraction of the star. By conservation of
energy, when the total energy of the star decreases,
radiation and/or other forms of energy must be
emitted by the star. But without an external source
of energy, the total energy of an isolated star can-
not increase. Hence the contraction of the star must
end if the total energy reaches a minimum, and
then he star reaches an equilibrium 1
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Stoner’s method for obtaining the properties
of white dwarfs was based on his concept that
at equilibrium, the sum of the internal energy
and the gravitational energy of the star should
be a minimum for a fixed mass of the star. Let
E. be the gravitational energy of the idealized
star, E, the total kinetic energy of rlectrons, n
the number of electrons per unite volume. Then
(Nauenberg, 2008) the equilibrium comdition is
given by

d
dn(EG+EK):0.

(1

The total kinetic energy of electrons is equaled
according to (Nauenberg, 2008):

Ex(l+x2)%(l+2x2)—%x3 _10g{x+(l+x2)%ﬂ, ()

_ 8nVmgc’

E, pE

K

where

é[x(l+x2)%(1+2x2)—10g{X+(1+x2)%ﬂ’ 3)

with
()

and V is total volume of electrons, p, is maxi-
mum momentum.

For the gravitational potential energy with 2.5
m,, as the mean molecular weight of the material
of the star (Nauenberg, 2008),
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1
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X =

%
E;= 35 (t—nj %GM%m;émocx. (5)
Kinetic energy (2) may be rewritten as
8nVmyc’®
EK = Tofi (X) . (6)

where
£(x) :Ex(uxz )% (1+2x2)—%x3 —1og{x+(1+x2)}"2 ﬂ (7)

Substituting M for V, and further sub-
2.5myn
stituting for n as above,
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2.5m, x

K
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Substituting receiving values of £, and E, in
equilibrium condition we have
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Inserting numerical values,
d(fi(x)
de| x°
where do we have

M =1751-10* [F(x)]%.

J:F(x) :1.483-10’23M%, (10)

(11)
Since the mean molecular weight is about
2.5m,, the limitmg demsity is given by

P, =2.5m,n=4.15-10"n. (12)

The density of the white dwarf stars is recon-
sidered from the point of view of the theory of the
polytropic gas spheres and gives for the mean den-
sity of a white dwarf (under ideal conditions) the
formula (Chandrasekhar, 1931)

P :2.162-106-(%GJ (13)

Corresponding Stoner formula has next form
(Stoner, 1929)

2
- 105 (M
ps =3.977-10 (/Mcj'

=1.84 (Nauenberg, 2008).

Ch

It should be noted that Chandrasekhar in this
case used the same method as Stoner (Chandrase-
khar,1938).

Fowler had assumed that the atoms in a white
dwarf were completely ionized, and that the
internal energy and pressure was entirely due to
a degenerate electron gas, while the ions mainly
accounted for the mass of the star. Stoner under-
stood that as the star contracts, the gravitational
energy decreases, and since the density increases,
the internal energy also increases. Hence, the total
energy of the star either decreases or increases dur-
ing the contraction of the star. By conservation of
energy, when the total energy of the star decreases,
radiation and/or other forms of energy must be
emitted by the star. But without an external source
of energy, the total energy of an isolated star can-
not increase. Hence the contraction of the star must
end if the total energy reaches a minimum, and then
the star reaches an equilibrium (Nauenberg, 2008).

To calculate the density at which the total
energy minimum occurs, Stoner started with an
approximation by assuming that the density was
uniform. In his first paper (Nauenberg, 2008) he
applied Fowler’s non-relativistic form for the
degeneracy energy, and he found that the density
depends quadratically on the mass of the star.

2

(14)

As we see Ps
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Later, in collaboration with F. Tyler (Nauenberg,
2008), he also considered the modification for
non-relativistic degeneracy when the density var-
ies according to a polytrope distribution with index
n=3/2.Then, after Anderson (Nauenberg, 2008)
pointed out that for a white dwarf with a mass of
the order of the mass of the Sun Stoner’s analy-
sis implied that the electrons become relativistic,
Stoner obtained the general relativistic equation of
state for a degenerate electron gas, and he applied
it to obtain the mass-density relation of white
dwarfs for arbitrary densities (Nauenberg, 2008).
By means of his minimum energy principle, he
obtained and analytic expression which gave this
relation in parametric form, showing that the den-
sity is a function that increases monotonically, and
more rapidly than the square of the star’s mass.
In particular, he obtained the fundamental result
that the density approaches infinity for a finite
mass. This is the celebrated limiting mass of white
dwarfs, in which the mass scale is entirely deter-
mined by some of the fundamental constants of
Nature.

Chandrasekhar’s early method was based on
applying the Lane-Emden polytrope solu-
tion of the differential equation for gravitational
equilibrium for the equation of state of a degenerate
electron gas which obey power laws in the non-rel-
ativistic and the extreme relativistic regime (Chan-
drasekhar, 1938). He obtained results similar to
Stoner’s for the white dwarf mass-density relation
in the non-relativistic regime, and for the critical
white dwarf mass in the extreme relativistic regime
(Nauenberg, 2008). For a power law dependence of
the pressure p on the density p,i.e. p ~p’, where
the exponent y is a constant, the solution of this
equation is given by the Lane-Emden polytrope

of index n, where y=1+ 1 . Chandrasekhar found

n
these solutions in Eddington’s book, ”The Internal
Constitution of Stars” (Eddington, 1926), which
also contained the relations and numerical quan-
tities that he needed for his calculations. In the
non-relativistic limit, y = 5/3, corresponding to a
polytrope with index n = 3/2, and this Lane-Emden
solution gives the central or mean density depend-
ence as the square of the mass of the star, the same
result which Stoner had obtained two years earlier
in the uniform density approximation. Substituting
Fowler’s non-relativistic pressure density rela-
tion, Chandrasekhar found that the magnitude of
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this dependence is smaller than Stoner’s value by
a factor approximately equal to two (Nauenberg,
2008). But somewhat earlier, motivated by Ston-
er’s work, E. Milne already had carried out this
calculation (Nauenberg, 2008), and at about the
same time Stoner and Tyler also had applied the
n = 3/2 polytrope density in Stoner’s minimum
energy method, and obtained the same result (Nau-
enberg, 2008). In the extreme relativistic limit,
y = 4/3, the corresponding polytrope has index
n =3, and the mass is independent of the central or
mean density of the star. Thus Chandrasekhar cal-
culated the magnitude of the critical mass of white
dwarfs, which depends on the fundamental con-
stants of nature, as had been shown a year before
by Stoner, and on a dimensional constant for the
n = 3 polytrope. This gave a critical mass about
20 % smaller than Stoner’s value for the uniform
density approximation (Nauenberg, 2008). By his
own admission, however, Chandrasekhar was puz-
zled by his result 2!, and he was not able to show
until several months later that the critical mass
was a maximum, and that in this limit the density
was infinite. Moreover (Nauenberg, 2008), he did
not pursue the implications of this result, and for
several years he assumed that at a certain value of
the density, matter would become incompressible,
an idea proposed earlier by Milne to avoid infinite
density at the center of his models of a star. Chan-
drasekhar formulated this idea as follows”:»We are
bound to assume therefore that a stage must come
beyond which the equation of state p = Kp *? is
not valid, for otherwise we are led to the physically
inconceivable result that for M= 0.92M [ M =solar
mass and p =2.51],7 =0, and p=cw. As we do
not know physically what the equation of state is
thatwe are to take, we assume for definiteness the
equation for the homogeneous material p=p, .,
where p,,, is the maximum density of which the
material is capable...» (Nauenberg, 2008).

It is of interest to inquire what the relation is
between Stoner’s minimum energy method and
Chandrasekhar’s equation of gravitational equa-
tion. Treating Stoner’s minimum energy principle
as a variational problem in which the total energy
is a functional of the density, and this density is a
variable function of the radial density, this varia-
tional approach leads to the quantum mechanical
ground state of an electron gas in the gravitational
field of the ions, which maintain charge neutral-
ity. This connection explains why Stoner and
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Chandrasekhar obtained the same relations for the
density and mass of the star as functions of fun-
damental constants, but with somewhat different
dimensionless quantities. In particular, I will show
that the solution to the generalized form of Ston-
er’s variational problem for the minimum of the
total energy of a dense star leads to the differential
equation of gravitational equilibrium which Chan-
drasekhar applied in his work. I have not found
any evidence, however, that either Stoner or Chan-
drasekhar were aware of this connection.

The total energy E of a zero temperature dense
star supported entirely by degeneracy pressure
against the gravitational attractive forces can be
written as a functional of the mass density distribu-
tion p integrated over the volume of the star,

Ezjdv[s(p)—u(p,r)], (15)

where ¢(p) is the internal energy given as a

function of of the mass density p by Stoner’ rela-

tivistic equation of state for a electron degenerate
gas, u(p,r) is gravitational energy

(r')e(r)

1
u(p,r)z—EGJdv'p |r—r’| ,

and G is Newton’s gravity constant.

The equilibrium distribution p as a function
of position r can be determined by evaluating the
minimum of E subject to the condition that the
total mass M = dvp is fixed (Nauenberg, 2008).
Assuming that p depends only on the radial dis-
tance r from the center of the star, this variational
problem leads to the differential equation for grav-
itational equilibrium,

a _
dr
here P = pde/dp — € is the pressure, and
M
M (r) =42 M0)R0)
-

(16)

g M(r)e(r) (17)

r

dr 1s the mass inside the

radius . In the uniform density approximation, the
solution of Stoner’s minimum energy principle
gives the relation

P=(320m)GM*R", (18)

where P is the mean pressure, M is the mass
and R is the radius of the star. Stoner’s relativistic
equation of state for the pressure — density relation
of a degenerate electron gas was first given in the
form P = Ax*F (x), where

] Zroelw i e 20 3) ] (19)

F(x):
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and x =

, Here n is the electrton density
8nmc

3M
="
4R’ m, 1
constant, c is the velocity of light, p is the molec-
45
87;%. Hence Stoner’s analytic

, m, 1s the proton mass, /4 is Planck’s

ular weight and

solution for the mass M of a a white dwarf takes

the form M = MC(4F(x))%. In the limit of small
density x = 1, F (x) = x/5, and P = (1/20)(3/m )**
(W*/m)n°", which corresponds to Fowler’s result
for the pressure-density relation in the non-relativ-
istic limit. In this limit we recover Stoner’s orig-
inal relation that the density » is proportional to
the square of the mass M of the star, n = (10 ©/3)
(mc/h)* (M/M )*. The maximum momentum of the
electrons is p = (mc)x, and therefore when x is of
order one or larger the effects of relativity become
important, as was first pointed out by Anderson,
and independently by Chandrasekhar. In the limit
of infinite density, x — oo, F'(x) — Y4,, which gives
P = (1/8)(3/n)"? n**, and M = M, with Stoner’s
critical mass expressed in terms of some of the fun-
damental constants of nature (Nauenberg, 2008),

M = (%6n)(5h%G)% (mH“)_z :

Chandrasekhar’s result for the critical mass,
expressed in terms of fundamental constants, cor-

responds
A A e

where u = 2.018... is a constant obtained bynu-
merically integrating the equation of gravitational
equilibrium for an n = 3 polytrope. It can be read-
ily verified that the critical mass evaluated with a
mass density distribution corresponding to an n =
3 polytrope is 20% smaller than for a uniform den-
sity distribution. In other words

s 12,
M

cCh

(20)

(22)

Astrophysical methods used to study the struc-
ture of stars are characterized by the use of phys-
ical assumptions, the choice of which is dictated
solely by the convenience of calculations (Chan-
drasekhar, 1964).

The Chandrasekhar limit is the maximum mass
of a stable white dwarf star (Chandrasekhar, 1938).
The currently accepted value of the Chandrasekhar
limit is about 1.4 M_ (2.765%10*" kg).
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White dwarfs resist gravitational collapse pri-
marily through electron degeneracy pressure, com-
pared to main sequence stars, which resist collapse
through thermal pressure. The Chandrasekhar limit
is the mass above which electron degeneracy pres-
sure in the star’s core is insufficient to balance the
star’s own gravitational self-attraction.

Normal stars fuse gravitationally compressed
hydrogen into helium, generating vast amounts of
heat. As the hydrogen is consumed, the stars’ core
compresses further allowing the helium and heav-
ier nuclei to fuse ultimately resulting in stable iron
nuclei, a process called stellar evolution. The next
step depends upon the mass of the star. Stars below
the Chandrasekhar limit become stable white dwarf
stars, remaining that way throughout the rest of the
history of the universe absent external forces. Stars
above the limit can become neutron stars or black
holes.

The Chandrasekhar limit is a consequence of
competition between gravity and electron degen-
eracy pressure. Electron degeneracy pressure is a
quantum-mechanical effect arising from the Pauli
exclusion principle. Since electrons are fermions,
no two electrons can be in the same state, so not
all electrons can be in the minimum-energy level.
Rather, electrons must occupy a band of energy lev-
els. Compression of the electron gas increases the
number of electrons in a given volume and raises
the maximum energy level in the occupied band.
Therefore, the energy of the electrons increases on
compression, so pressure must be exerted on the
electron gas to compress it, producing electron
degeneracy pressure. With sufficient compression,
electrons are forced into nuclei in the process of
electron capture, relieving the pressure (Nauen-
berg, 2008).

In the nonrelativistic case, electron degener-
acy pressure gives rise to an equation of state of
the form p = K p°”, where P is the pressure, p is
the mass density, and K is a constant. Solving the
hydrostatic equation leads to a model white dwarf
that is a polytrope of index 3/2 — and therefore has
radius inversely proportional to the cube root of
its mass, and volume inversely proportional to its
mass (Nauenberg, 2008). As the mass of a model
white dwarf increases, the typical energies to
which degeneracy pressure forces the electrons are
no longer negligible relative to their rest masses.
The velocities of the electrons approach the speed
of light, and special relativity must be taken into
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Fig. 1. Radius—mass relations for a model white dwarf [20-22]. 1 — Using the general pressure law for
an ideal Fermi gas; 2 — Non-relativistic ideal Fermi gas; 3 — Ultrarelativistic limit (Nauenberg, 2008)

account. In the strongly relativistic limit, the equa-
tion of state takes the form P = K p**. This yields a
polytrope of index 3, which has a total mass, M,__,
depending only on K, (Nauenberg, 2008).

For a fully relativistic treatment, the equation of
state used interpolates between the equations P =
K p*? for small p and P = K p** for large p. When
this is done, the model radius still decreases with
mass, but becomes zero at M, .. This is the Chan-
drasekhar limit (Nauenberg, 2008).The curves of
radius against mass for the non-relativistic and
relativistic models are shown in the Fig. 1 (Nau-
enberg, 2008). They are colored blue and green,
respectively. u_has been set equal to 2. Radius is
measured in standard solar radii or kilometers, and
mass in standard solar masses.

For a more detailed analysis of astrophysical
and cosmological processes, it is worth using Ein-
stein’s equations, or their simplified version of the
Friedmann equation. Since they are practically a
generalization of the energy balance equations
(potential energy is equal to kinetic energy) (Bar-
row, 2007). The connection with theormodynam-
ics of these equations was established by Tolman

(Tolman, 1931). The current state of this problem
is given in Danylchenko (Danylchenko, 2022). If
in the Lane-Emden equations physical processes
are introduced through the polytrope, then in the
general theory of relativity through the curvature
of space-time (Chandrasekhar, 1964).

In addition, these processes of the transition of
stars from one state to another are the subject of the
physics of critical phenomena and from this point
of view, more universal methods should be sought
for the construction of such theories and models
(Trokhimchuck, 2024).

Conclusions

1. Main peculiarities of modeling the dwite
stars are represented.

2. Comparative analysis of Stoner energetic
method and Lane-Emden equation method is
observed.

3. It is shown that general relativity method is
more general as Stoner and Lane-Emden method.

4. Perspective of the investigations new meth-
ods of modeling the white dwarfs and other com-
pact astrophysical objects as development pf phys-
ics of critical processes are discussed too.
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