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SOME PROBLEMS OF WHITE DWARF MODELLING 

Main peculiarities of formulation main principles and criteria of white dwarf theories are analyzed. Short comparative 
analysis of main methods of modeling is represented. All these methods are based on the conditions of equilibrium. The role 
of A. Eddington, R. Fowler, E. Stoner and S. Chandrasekar researches in the creation this theory is discussed. A. Eddington 
proposed to use the Lane-Emden equations to construct the theory of white dwarfs, which allow us to describe processes 
in polytropic gas spheres. It is shown that Stoner method, Lane-Emden equations and Einstein equations is based on 
the search of equilbrium comditions for sphere or semple to sphere symmetries. The role of the development of theoretical 
physics (Fermi-Dirac statistics) in the creation of this theory is shown. It should be noted that thanks to Stoner’s research, 
the Pauli principle and one of the first applications of Fermi-Dirac statistics for degenerate electronic systems appeared 
in the Bohr theory of the atom precisely in the theory of white dwarfs. Main peculiarities of Stoner method and Lane-
Emden equtions are observed. Stoner’s method is based on the idea of   studying the equilibrium of a star based on energetic 
considerations. The Lane-Emden equations were constructed for gaseous spheres with different polytropic indices. It was 
Emden’s introduction of thermodynamics into these equations that allowed them to be used in astrophysics. For these 
equations, it is necessary to additionally introduce the conditions for the rotation of the star. Einstein’s equation is also 
on the one hand a condition of energy equilibrium (effective potential energy equals kinetic energy) for inhomogeneous 
systems, and on the other hand it is a generalization of the special theory of relativity to curvilinear geometry. The 
generalization of the interval itself is nothing more than a metric of the corresponding space-time. Rotation is included in 
the equation from the very beginning. Peculiarities of application methods of general relarivity for modelling white dwarf 
structure and processes are analyzed too. 

Key words: critical processes, white dwarf, S. Chandrasrekhar, Lane-Emden equation, equilibrium conditions, phase 
transformarions, general relativity. 
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ДЕЯКІ ПРОБЛЕМИ МОДЕЛЮВАННЯ БІЛИХ КАРЛИКІВ

Проаналізовано основні особливості формулювання основних принципів і критеріїв теорій білих карликів. 
Подано короткий порівняльний аналіз основних методів моделювання. Всі ці методи базуються на умовах 
рівноваги. Обговорюється роль досліджень А. Еддінгтона, Р. Фаулера, Е. Стонера та С. Чандрасекара 
у створенні цієї теорії. А. Еддінгтон запропонував використовувати рівняння Лейна-Емдена для побудови теорії 
білих карликів, які дозволяють описувати процеси в політропних газових сферах. Показано, що метод Стонера, 
рівняння Лейна-Емдена та рівняння Ейнштейна ґрунтуються на пошуку умов рівноваги для симетрій сфери або 
відрізка до сфери. Показано роль розвитку теоретичної фізики (статистики Фермі-Дірака) у створенні цієї 
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теорії. Слід зазначити, що завдяки дослідженням Стонера в теорії атома Бора саме в теорії білих карликів 
з’явився принцип Паулі і одне з перших застосувань статистики Фермі-Дірака для вироджених електронних 
систем. Розглянуто основні особливості методу Стонера та рівнянь Лейна-Емдена. Метод Стонера базується 
на ідеї вивчення рівноваги зірки на основі енергетичних міркувань. Побудовано рівняння Лейна-Емдена для 
газоподібних куль з різними показниками політропії. Саме введення Емденом термодинаміки в ці рівняння 
дозволило використовувати їх в астрофізиці. Для цих рівнянь необхідно додатково ввести умови обертання зірки. 
Рівняння Ейнштейна також є, з одного боку, умовою енергетичної рівноваги (ефективна потенціальна енергія 
дорівнює кінетичній енергії) для неоднорідних систем, а з іншого – узагальненням спеціальної теорії відносності 
на криволінійну геометрію. Узагальнення самого інтервалу є не що інше, як метрика відповідного простору-часу. 
Обертання включено в рівняння з самого початку. Проаналізовано особливості застосування методів загальної 
теорії відносності для моделювання структури та процесів білих карликів.

Ключові слова: критичні процеси, білі карлики, С. Чандрасекар, рівняння Лейна-Емдена, умови рівноваги, 
фазові перетворення, загальна теорія відносності.

Introduction
Main peculiarities of formulation main princi-

ples and criteria of white dwarf theories are ana-
lyzed. Short comparative analysis of main meth-
ods of modeling is represented. All thes methods 
must be based on the conditions of equilibrium. 
It is shown that Stoner method (Stoner, 1929), 
Lane-Emden equations (Chandrasekhar, 1938) and 
Einstein equations (Chandrasekhar, 1964) is based 
on the search of equilbrium conditions for sphere 
or sample to sphere symmetries. Main peculiari-
ties of Stoner method and Lane-Emden equtions 
are observed. Peculiarities of application methods 
of general relarivityy for modelling white dwarf 
structure and processes are analyzed too. 

Main concepts of theory of white dwarfs are 
discussing (Vavrukh, 2018). The role of A. Edding-
ton (Eddington, 1926), R. Fowler (1926), E. Stoner 
(1929) and S. Chandrasekar (1930) researches in 
the creation this theory is discussed. The role of the 
development of theoretical physics (Fermi-Dirac 
statistics) in the creation of this theory is shown 
(Stoner, 1924; Fowler, 1926).

It should be noted that thanks to Stoner’s 
research (Stoner, 1924), the Pauli principle and 
one of the first applications of Fermi-Dirac statis-
tics for degenerate electronic systems appeared in 
the Bohr theory of the atom precisely in the theory 
of white dwarfs.

A. Eddington, R. Fowler, their student S. Chan-
drasekhar, E. Stoner, V. Anderson and others made 
the main contribution to the development of the 
theory of white dwarfs (Nauenberg, 2008; Vav-
rukh, 2018). 

A. Eddington initiated the study of white dwarfs 
and, in addition, pointed out that the source of the 
stars’ energy is thermonuclear reactions of hydro-
gen and helium synthesis (Eddington, 1926). He 
also proposed to use the Lane-Emden equations to 

construct the theory of white dwarfs, which allow 
us to describe processes in polytropic gas spheres. 
This method for white dwarfs was developed 
by A. Fowler (Fowler, 2029) and most of all by 
S. Chandrasekhar (Chandrasekhar, 1938).

R. Fowler was the first to draw attention to the 
use of Fermi-Dirac statistics for the theory of white 
dwarfs (Fawler, 1926). However, the first theory 
for former dwarfs was built by E. Stoner (Stoner, 
1929). At the heart of his theory he put the varia-
tional principle, which he used for total energy. Vio 
estimated the density and mass of the white dwarf. 
This same method was used by S. Chandrasekhar 
to determine the density of a white dwarf. He built 
a more complete theory of a gray dwarf based on 
the Lane-Emden equations.

It should be noted that all astrophysical models 
are built based on considerations of equilibrium, 
and are still tied in one way or another to spher-
ical symmetry. Thus, the Lane-Emden equations 
are derived for the equilibrium conditions of a gas 
sphere taking into account the corresponding poly-
tropic process. Chandrasekhar separately derived 
this equation for isothermal case too (Chandrase-
khar, 1938). However, these equations do not take 
into account the rotation of the star (Vavrukh, 
2018). Einstein’s equation is nothing but the equal-
ity of potential (effective) energy, which also takes 
into account the rotation and kinetic energy (Bar-
row, 2007). That is, it is nothing but an extension of 
the methods of celestial mechanics. All the metrics 
that are in the general theory of relativity, roughly 
speaking, are derived from the spherical metric 
(Barrow, 2007). Therefore this metod ass more 
universal for astrophysical applications was recom-
mended by A. Eddingtom (Chandrasekhar, 1964).

In the theory of degenerate dwarfs by S. Chan-
drasekhar is generalized by constructing mul-
tiparameter and multiphase models that take into 
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account the incomplete degeneracy of the elec-
tronic subsystem, the presence of interparticle 
interactions, magnetic fields, variable chemical 
content along the radius, and axial rotation of 
stars (Varukh, 2018). It is allowed to adequately 
describe and provide interpretation of modern 
observed data. Based on the solution of the equi-
librium equations, the dependence of the structural 
and energy characteristics of dwarfs on the param-
eters of the models was determined. The inverse 
problem of the theory of degenerate dwarfs was 
solved – the determination of the main structural 
and thermodynamic parameters of the models 
based on data on the masses, radii, and effective 
temperatures of observed field dwarfs and dwarfs 
in binaries systems (Vavrukh, 2018).

S. Chandrasekhar theory of white dwarfs 
was developed in second half of 20th century. In 
the works of E. Shatsman, S. Chandrasekhar, 
S. Kaplan, R. James L. Mestell, I. Zeldovich, 
and I. Novikov, an elementary theory of cooling 
of degenerate dwarfs was constructed (Vavrukh, 
2018). The issues of stability in relation to neutron-
ization processes, the effects of the general theory 
of relativity and the influence of axial rotation, etc., 
were also considered. Much less attention has been 
paid to the generalization of models of the inter-
nal structure of dwarfs. Here it should be noted 
the work of E. Solpiter on the equation of state 
of the electron-nuclear model at high couplings 
with approximate consideration of Coulomb inter-
actions (at T = 0 K) and the work of T. Hamada 
and E. Solpiter devoted to the calculation of the 
«mass-radius» ratio for homogeneous two-compo-
nent models corresponding to chemical elements 
with a nuclear charge of 2 26≤ ≤z  based on the 
equation of state obtained by E. Solpiter and with 
the acceleration of neutronization processes, but 
taking into account the effects of the general theory 
of relativity (Vavrukh, 2018).

Main results
The existence of a mass limit for white dwarfs 

is usually attributed solely to the late astrophysicist 
Subrahmanyan Chandrasekhar, and this limit is 
named after him (Chandrasekhar, 1938). But as is 
often the case, the history of this discovery is more 
nuanced.In this note I will show that the existence of 
a maximum mass was first establishedby Edmund 
C. Stoner, a physicist who began experimental 
research under the supervision of Rutherford at 
the Cavendish in Cambridge, but later switched to 

theoretical work. Rutherford recommended Stoner 
to a position at the Physics department of the Uni-
versity of Leeds where he spent his entire career 
(Nauenberg, 2008).

According to G. Cantor, he was “probably the 
leading Cavendish-trained theoretical physicist of 
the 1920’s, although he learned theory mostly on 
his own, and became known for his work on mag-
netism (Nauenberg, 2008). Unfortunately, Stoner 
suffered from diabetes and poor health which 
restricted his travels, and this may account for the 
fact that he did not receive wider recognition for 
his achievements. In 1924 Stoner wrote a paper on 
the distribution of electrons among atomic levels 
(Stoner, 1924). In the preface of the fourth edition 
of his classic book, “Atomic Structure and Spectral 
Lines”, Arnold Sommerfeld gave special mention 
to “ einen grossen Fortschritt [a great advance-
ment]” brought about by Stoner’s analysis, which 
then came to the attention of Wolfgang Pauli, and 
played and important role in his formulation of 
the exclusion principle in quantum physics (Nau-
enberg, 2008). Therefore, it is not surprising that 
Stoner’s interest in white dwarfs was aroused by 
Ralph H. Fowler’s suggestion (Fowler, 1926) that 
the exclusion principle could be applied to solve a 
major puzzle, the origin of the extreme high den-
sity of white dwarfs (Nauenberg, 2008), which 
could not be explained by classical physics.

At the time, the conventional wisdom was that 
the source of internal pressure which maintained all 
stars in equilibrium against gravitational collapse 
was the internal pressure of the matter compos-
ing the star which had been heated into a gas pre-
sumably, according to Eddington, by “subatomic 
energy’’ (Eddington, 1926). But when this supply 
of energy is exhausted and the star cools, Fowler 
proposed that a new equilibrium would ensue, 
even at zero temperature, due to the “degeneracy” 
pressure of the electrons caused by the exclusion 
principle (Nauenberg, 2008). Fowler, however, did 
not attempt to determine the equilibrium proper-
ties of such a star which he regarded as “strictly 
analogous to one giant molecule in the ground 
state’’. Apparently he was unaware that at the 
time, Llewellyn H. Thomas had developed a math-
ematical method to solve this problem in atomic 
physics (Nauenberg, 2008). Subsequently, Stoner 
developed a novel minimum energy principle to 
obtain the equilibrium properties of such dense 
stars, and by applying Fowler’s non-relativistic 
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equation of state for a degenerate electron gas in 
a constant density approximation, he found that 
the density increases with the square of the mass 
of the star (Nauenberg, 2008). In such a gas the 
mean momentum of an electron is proportional to 
the cube root of the density, and Wilhem Ander-
son, a privatdozent at Tartu University, Estonia, 
who had read Stoner’s paper, noticed that for the 
mass of a white dwarf comparable to or higher 
than the mass of the Sun, the density calculated 
from Stoner’s non-relativistic mass-density rela-
tion implied that the electrons become relativistic 
(Nauenberg, 2008). Hence, Anderson concluded 
that in this regime, this relation gave “gröblich 
falschen Resultaten [gross false results]” for the 
properties of a white dwarf. He attemped to extend 
the equation of state of a degenerate electron gas 
to the relativistic domain, but he gave an incor-
rect formulation which, fortuitously, indicated that 
Stoner’s minimum energy principle implied a max-
imum value for the white dwarf mass. Alerted by 
Anderson’s paper, Stoner then derived the correct 
relativistic equation of state16, and re-calculated, 
in a constant density approximation, the properties 
of white dwarfs for arbitrary densities (Nauenberg, 
2008). Thus, he obtained, now on solid theoretical 
grounds, the surprising result that when the density 
approaches infinity, the mass of the star reaches a 
maximum value.

Stoner’s method (Nauenberg, 2008) for obtain-
ing the properties of white dwarfs was basedon his 
concept that at equilibrium, the sum of the inter-
nal energy and the gravitational energy of the star 
should be a minimum for a fixed mass of the star.

Fowler had assumed that the atoms in a white 
dwarf were completely ionized, and that the 
internal energy and pressure was entirely due to 
a degenerate electron gas, while the ions mainly 
accounted for the mass of the star. Stoner under-
stood that as the star contracts, the gravitational 
energy decreases, and since the density increases, 
the internal energy also increases. Hence, the total 
energy of the star either decreases or increases dur-
ing the contraction of the star. By conservation of 
energy, when the total energy of the star decreases, 
radiation and/or other forms of energy must be 
emitted by the star. But without an external source 
of energy, the total energy of an isolated star can-
not increase. Hence the contraction of the star must 
end if the total energy reaches a minimum, and 
then he star reaches an equilibrium 1

Stoner’s method for obtaining the properties 
of white dwarfs was based on his concept that 
at equilibrium, the sum of the internal energy 
and the gravitational energy of the star should 
be a minimum for a fixed mass of the star. Let 
EG  be the gravitational energy of the idealized 
star, EK  the total kinetic energy of rlectrons, n 
the number of electrons per unite volume. Then 
(Nauenberg, 2008) the equilibrium comdition is 
given by

d

dn
E EG K�� � � 0.� � � � � �                 (1)

The total kinetic energy of electrons is equaled 
according to (Nauenberg, 2008):
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and V is total volume of electrons, p0  is maxi-
mum momentum.

For the gravitational potential energy with 2.5 
mH  as the mean molecular weight of the material 
of the star (Nauenberg, 2008),
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Kinetic energy (2) may be rewritten as
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Substituting M m nH2 5.  for V, and further sub-
stituting for n as above,
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Substituting receiving values of EG  and EK  in 
equilibrium condition we have
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Inserting numerical values,
d

dx
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Since the mean molecular weight is about 
2 5. mH  the limitmg demsity is given by

�0
242 5 4 15 10� � � �. . .m n nH            (12)

The density of the white dwarf stars is recon-
sidered from the point of view of the theory of the 
polytropic gas spheres and gives for the mean den-
sity of a white dwarf (under ideal conditions) the 
formula (Chandrasekhar, 1931)

�Ch
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M
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�
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�
�2 162 106
2
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Corresponding Stoner formula has next form 
(Stoner, 1929)
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�
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As we see � �
S

Ch
�1 84.  (Nauenberg, 2008).

It should be noted that Chandrasekhar in this 
case used the same method as Stoner (Chandrase-
khar,1938).

Fowler had assumed that the atoms in a white 
dwarf were completely ionized, and that the 
internal energy and pressure was entirely due to 
a degenerate electron gas, while the ions mainly 
accounted for the mass of the star. Stoner under-
stood that as the star contracts, the gravitational 
energy decreases, and since the density increases, 
the internal energy also increases. Hence, the total 
energy of the star either decreases or increases dur-
ing the contraction of the star. By conservation of 
energy, when the total energy of the star decreases, 
radiation and/or other forms of energy must be 
emitted by the star. But without an external source 
of energy, the total energy of an isolated star can-
not increase. Hence the contraction of the star must 
end if the total energy reaches a minimum, and then 
the star reaches an equilibrium (Nauenberg, 2008).

To calculate the density at which the total 
energy minimum occurs, Stoner started with an 
approximation by assuming that the density was 
uniform. In his first paper (Nauenberg, 2008) he 
applied Fowler’s non-relativistic form for the 
degeneracy energy, and he found that the density 
depends quadratically on the mass of the star. 

Later, in collaboration with F. Tyler (Nauenberg, 
2008), he also considered the modification for 
non-relativistic degeneracy when the density var-
ies according to a polytrope distribution with index 
n = 3/2. Then, after Anderson (Nauenberg, 2008) 
pointed out that for a white dwarf with a mass of 
the order of the mass of the Sun Stoner’s analy-
sis implied that the electrons become relativistic, 
Stoner obtained the general relativistic equation of 
state for a degenerate electron gas, and he applied 
it to obtain the mass-density relation of white 
dwarfs for arbitrary densities (Nauenberg, 2008). 
By means of his minimum energy principle, he 
obtained and analytic expression which gave this 
relation in parametric form, showing that the den-
sity is a function that increases monotonically, and 
more rapidly than the square of the star’s mass. 
In particular, he obtained the fundamental result 
that the density approaches infinity for a finite 
mass. This is the celebrated limiting mass of white 
dwarfs, in which the mass scale is entirely deter-
mined by some of the fundamental constants of 
Nature.

Chandrasekhar’s early method was based on 
applying the Lane-Emden polytrope solu-
tion of the differential equation for gravitational 
equilibrium for the equation of state of a degenerate 
electron gas which obey power laws in the non-rel-
ativistic and the extreme relativistic regime (Chan-
drasekhar, 1938). He obtained results similar to 
Stoner’s for the white dwarf mass-density relation 
in the non-relativistic regime, and for the critical 
white dwarf mass in the extreme relativistic regime 
(Nauenberg, 2008). For a power law dependence of 
the pressure p on the density ρ , i.e. p �~ �� , where 
the exponent γ  is a constant, the solution of this 
equation is given by the Lane-Emden polytrope 
of index n, where � � �1

1

n
. Chandrasekhar found 

these solutions in Eddington’s book, ”The Internal 
Constitution of Stars” (Eddington, 1926), which 
also contained the relations and numerical quan-
tities that he needed for his calculations. In the 
non-relativistic limit, γ  = 5/3, corresponding to a 
polytrope with index n = 3/2, and this Lane-Emden 
solution gives the central or mean density depend-
ence as the square of the mass of the star, the same 
result which Stoner had obtained two years earlier 
in the uniform density approximation. Substituting 
Fowler’s non-relativistic pressure density rela-
tion, Chandrasekhar found that the magnitude of 



96 97

Фізика та освітні технології, Вип. 1, 2025

this dependence is smaller than Stoner’s value by 
a factor approximately equal to two (Nauenberg, 
2008). But somewhat earlier, motivated by Ston-
er’s work, E. Milne already had carried out this 
calculation (Nauenberg, 2008), and at about the 
same time Stoner and Tyler also had applied the 
n = 3/2 polytrope density in Stoner’s minimum 
energy method, and obtained the same result (Nau-
enberg, 2008). In the extreme relativistic limit, 
γ  = 4/3, the corresponding polytrope has index 
n = 3, and the mass is independent of the central or 
mean density of the star. Thus Chandrasekhar cal-
culated the magnitude of the critical mass of white 
dwarfs, which depends on the fundamental con-
stants of nature, as had been shown a year before 
by Stoner, and on a dimensional constant for the 
n = 3 polytrope. This gave a critical mass about 
20 % smaller than Stoner’s value for the uniform 
density approximation (Nauenberg, 2008). By his 
own admission, however, Chandrasekhar was puz-
zled by his result 21, and he was not able to show 
until several months later that the critical mass 
was a maximum, and that in this limit the density 
was infinite. Moreover (Nauenberg, 2008), he did 
not pursue the implications of this result, and for 
several years he assumed that at a certain value of 
the density, matter would become incompressible, 
an idea proposed earlier by Milne to avoid infinite 
density at the center of his models of a star. Chan-
drasekhar formulated this idea as follows”:»We are 
bound to assume therefore that a stage must come 
beyond which the equation of state p = Kρ  4/3 is 
not valid, for otherwise we are led to the physically 
inconceivable result that for M = 0.92Ms [ Ms =solar 
mass and µ  = 2.5 ], r1 = 0, and � � � . As we do 
not know physically what the equation of state is 
thatwe are to take, we assume for definiteness the 
equation for the homogeneous material � �� max , 
where ρmax � is the maximum density of which the 
material is capable…» (Nauenberg, 2008).

It is of interest to inquire what the relation is 
between Stoner’s minimum energy method and 
Chandrasekhar’s equation of gravitational equa-
tion. Treating Stoner’s minimum energy principle 
as a variational problem in which the total energy 
is a functional of the density, and this density is a 
variable function of the radial density, this varia-
tional approach leads to the quantum mechanical 
ground state of an electron gas in the gravitational 
field of the ions, which maintain charge neutral-
ity. This connection explains why Stoner and 

Chandrasekhar obtained the same relations for the 
density and mass of the star as functions of fun-
damental constants, but with somewhat different 
dimensionless quantities. In particular, I will show 
that the solution to the generalized form of Ston-
er’s variational problem for the minimum of the 
total energy of a dense star leads to the differential 
equation of gravitational equilibrium which Chan-
drasekhar applied in his work. I have not found 
any evidence, however, that either Stoner or Chan-
drasekhar were aware of this connection.

The total energy E of a zero temperature dense 
star supported entirely by degeneracy pressure 
against the gravitational attractive forces can be 
written as a functional of the mass density distribu-
tion ρ integrated over the volume of the star,

E dv u p r� � � � � � ��� ��� � , , �               (15)

where � �� �  is the internal energy given as a 
function of of the mass density ρ	by		Stoner’ rela-
tivistic equation of state for a electron degenerate 
gas, u p r,� �  is gravitational energy

u p r G dv
r r

r r
, '

'

'
,� � � � �

� � � �
�

1

2

� �
�           (16)

and G is Newton’s gravity constant.
The equilibrium distribution ρ as a function 

of position r can be determined by evaluating the 
minimum of E, subject to the condition that the 
total mass M = ∫dvρ is fixed (Nauenberg, 2008). 
Assuming that ρ depends only on the radial dis-
tance r from the center of the star, this variational 
problem leads to the differential equation for grav-
itational equilibrium,

dP

dr
G
M r r

r
� �

� � � ��
2

                (17)

here P = ρdε/dρ – ε is the pressure, and 

M r r
M r r

r
dr� � � �

� � � �
4 2

2
�

�
 is the mass inside the 

radius r. In the uniform density approximation, the 
solution of Stoner’s minimum energy principle 
gives the relation 

P = (3/20 π )GM 2/R4,                 (18)

where P is the mean pressure, M is the mass 
and R is the radius of the star. Stoner’s relativistic 
equation of state for the pressure – density relation 
of a degenerate electron gas was first given in the 
form P = Ax4F (x), where

F x
x x

x x x x� � � � �� � � � �� ��
��

�
��

1

8

3
1 1 2 3

3
2 2 3log ,  (19)
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and x nh

mc
�
3

8�
,  Here n is the electrton density 

n
M

R mH
�

3

4 3� �
, �  mH  is the proton mass, h is Planck’s 

constant, c is the velocity of light, µ is the molec-
ular weight and 8

3

4 5

3

πm c
h

. Hence Stoner’s analytic 
solution for the mass M of a a white dwarf takes 
the form M M F xc� � �� �4

3
2 .  In the limit of small 

density x = 1, F (x) = x/5, and P = (1/20)(3/ π  )2/3  
(h2/m)n5/3, which corresponds to Fowler’s result 
for the pressure-density relation in the non-relativ-
istic limit. In this limit we recover Stoner’s orig-
inal relation that the density n is proportional to 
the square of the mass M of the star, n = (10 �π /3)
(mc/h)3 (M/Ms)

2. The maximum momentum of the 
electrons is p = (mc)x, and therefore when x is of 
order one or larger the effects of relativity become 
important, as was first pointed out by Anderson, 
and independently by Chandrasekhar. In the limit 
of infinite density, x → ∞, F (x) → ¼,, which gives 
P = (1/8)(3/ π )1/3 n4/3, and M = Mc, with Stoner’s 
critical mass expressed in terms of some of the fun-
damental constants of nature (Nauenberg, 2008),

M hc
G mcS H� � �� � � ��3

16
5

2

3
2 2

� � .       (20)

Chandrasekhar’s result for the critical mass, 
expressed in terms of fundamental constants, cor-
responds

M u hc
G mcCh H� �

�
�

�
�
�� � � ��6

8

3
2 2

� � ,     (21)

where u = 2.018… is a constant obtained bynu-
merically integrating the equation of gravitational 
equilibrium for an n = 3 polytrope. It can be read-
ily verified that the critical mass evaluated with a 
mass density distribution corresponding to an n = 
3 polytrope is 20% smaller than for a uniform den-
sity distribution. In other words

M

M
cS

cCh

=1 2. .                         (22)

Astrophysical methods used to study the struc-
ture of stars are characterized by the use of phys-
ical assumptions, the choice of which is dictated 
solely by the convenience of calculations (Chan-
drasekhar, 1964). 

The Chandrasekhar limit is the maximum mass 
of a stable white dwarf star (Chandrasekhar, 1938). 
The currently accepted value of the Chandrasekhar 
limit is about 1.4 M☉ (2.765×1030 kg). 

c

White dwarfs resist gravitational collapse pri-
marily through electron degeneracy pressure, com-
pared to main sequence stars, which resist collapse 
through thermal pressure. The Chandrasekhar limit 
is the mass above which electron degeneracy pres-
sure in the star’s core is insufficient to balance the 
star’s own gravitational self-attraction.

Normal stars fuse gravitationally compressed 
hydrogen into helium, generating vast amounts of 
heat. As the hydrogen is consumed, the stars’ core 
compresses further allowing the helium and heav-
ier nuclei to fuse ultimately resulting in stable iron 
nuclei, a process called stellar evolution. The next 
step depends upon the mass of the star. Stars below 
the Chandrasekhar limit become stable white dwarf 
stars, remaining that way throughout the rest of the 
history of the universe absent external forces. Stars 
above the limit can become neutron stars or black 
holes.  

The Chandrasekhar limit is a consequence of 
competition between gravity and electron degen-
eracy pressure. Electron degeneracy pressure is a 
quantum-mechanical effect arising from the Pauli 
exclusion principle. Since electrons are fermions, 
no two electrons can be in the same state, so not 
all electrons can be in the minimum-energy level. 
Rather, electrons must occupy a band of energy lev-
els. Compression of the electron gas increases the 
number of electrons in a given volume and raises 
the maximum energy level in the occupied band. 
Therefore, the energy of the electrons increases on 
compression, so pressure must be exerted on the 
electron gas to compress it, producing electron 
degeneracy pressure. With sufficient compression, 
electrons are forced into nuclei in the process of 
electron capture, relieving the pressure (Nauen-
berg, 2008). 

In the nonrelativistic case, electron degener-
acy pressure gives rise to an equation of state of 
the form p = K1ρ

5/3, where P is the pressure, ρ is 
the mass density, and K1 is a constant. Solving the 
hydrostatic equation leads to a model white dwarf 
that is a polytrope of index 3/2 – and therefore has 
radius inversely proportional to the cube root of 
its mass, and volume inversely proportional to its 
mass (Nauenberg, 2008). As the mass of a model 
white dwarf increases, the typical energies to 
which degeneracy pressure forces the electrons are 
no longer negligible relative to their rest masses. 
The velocities of the electrons approach the speed 
of light, and special relativity must be taken into 
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account. In the strongly relativistic limit, the equa-
tion of state takes the form P = K2ρ

4/3. This yields a 
polytrope of index 3, which has a total mass, Mlimit, 
depending only on K2 (Nauenberg, 2008).

For a fully relativistic treatment, the equation of 
state used interpolates between the equations P = 
K1ρ

5/3 for small ρ and P = K2ρ
4/3 for large ρ. When 

this is done, the model radius still decreases with 
mass, but becomes zero at Mlimit. This is the Chan-
drasekhar limit (Nauenberg, 2008).The curves of 
radius against mass for the non-relativistic and 
relativistic models are shown in the Fig. 1 (Nau-
enberg, 2008). They are colored blue and green, 
respectively. μe has been set equal to 2. Radius is 
measured in standard solar radii or kilometers, and 
mass in standard solar masses.

For a more detailed analysis of astrophysical 
and cosmological processes, it is worth using Ein-
stein’s equations, or their simplified version of the 
Friedmann equation. Since they are practically a 
generalization of the energy balance equations 
(potential energy is equal to kinetic energy) (Bar-
row, 2007). The connection with theormodynam-
ics of these equations was established by Tolman 

(Tolman, 1931). The current state of this problem 
is given in Danylchenko (Danylchenko, 2022). If 
in the Lane-Emden equations physical processes 
are introduced through the polytrope, then in the 
general theory of relativity through the curvature 
of space-time (Chandrasekhar, 1964). 

In addition, these processes of the transition of 
stars from one state to another are the subject of the 
physics of critical phenomena and from this point 
of view, more universal methods should be sought 
for the construction of such theories and models 
(Trokhimchuck, 2024).

Conclusions
1. Main peculiarities of modeling the dwite 

stars are represented.
2. Comparative analysis of Stoner energetic 

method and Lane-Emden equation method is 
observed.

3. It is shown that general relativity method is 
more general as Stoner and Lane-Emden method.

4. Perspective of the investigations new meth-
ods of modeling the white dwarfs and other com-
pact astrophysical objects as development pf phys-
ics of critical processes are discussed too. 

Fig. 1. Radius–mass relations for a model white dwarf [20-22]. 1 – Using the general pressure law for 
an ideal Fermi gas; 2 – Non-relativistic ideal Fermi gas; 3 – Ultrarelativistic limit (Nauenberg, 2008)
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