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VOLTERRA AND LOTKA-VOLTERRA SYSTEMS OF KINETIC EQUATIONS
AND THEIR EXPANSION AND APPLICATIONS

A systematic analysis of the systems of kinetic equations of Volterra and Lotka-Volterra is given. Population problems
that had to be solved and their brief analysis are given. These problems include demographic, ecological, etc. problems.
From a conceptual point of view, these problems are divided into two types: the problem of two species eating the same food
(Volterra equation) and the predator-prey problem (Lotka-Volterra equation). The first problem arose from the problem
of rabbit reproduction in Australia. In addition, in the same population biology, the problem arose when one species
eats another (predator and prey). This problem was solved by many researchers in the field of biology and medicine, in
particular virology. Its partial solution is given in the book of A. Lotka, and a more general one in the lectures of V. Volterra.
Because of this, these equations are sometimes called the Lotka-Volterra equations. As in the first and second problems,
it is necessary that there is enough resource (food) for the stationary stable existence and development of the dynamical
system. We have analyzed the problems that are solved or that are expedient to be solved using these methods. Problems
with a non-uniform temporal hierarchy of processes have also been analyzed. It has been shown that for solving such
problems it is expedient to use the method of adiabatic elimination of variables. This method was used to solve kinetic
problems in relaxation optics. These equations are expedient to use when there are several competing in-phase processes.
Based on the general analysis of the systems of Volterra equations, it is possible to construct system criteria for controlling
and predicting the corresponding processes and phenomena. To move to spatial problems, it is necessary to introduce
the corresponding transport and diffusion coefficients into the systems of equations of Volterra and Lotka-Volterra. In this
case, these equations can also be considered as systems of nonlinear diffusion equations. A list of problems for which it is
expedient to use such a formalism is given.

Key words: dynamical processes, Volterra, Lotka, adiabatic exclusion, diffusion expansion, population problems,
nonlinear dynamics.
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CUCTEMMU KIHETUYHUX PIBHSAHb BOJIBTEPPA TA TOTKU-BOJBTEPPA
TA IX POSIIUPEHHS TA 3ACTOCYBAHHS

Hasooumces cucmemnuii ananiz cucmem KinemuuyHnux piensnb Bonemeppu ma Jlomxa-Boremeppu. Hagoosimbcs
RONYIAYIUHI 3a0aui, Ki He0OXIOHO OY10 P36 ’a3amu, ma KOpomxuil ix ananis. Jo yux 3a0au 6i0HOCAMbCA deMpoepagiuHi,
eKoN0IUHI ma m. n. npodaemu. 3 NOHAMILHOT MOUKYU 30pY Yi 3a0aui po30UBAIOMbCS HA 0XHC6A MUNU. 3a0A4A NPO 084 8UJY,
wo ioamwv 00wy ixcy (pieHanHa Bonvmeppu) ma 3adaua xudicax-scepmea (pisnanus Jlomka-Boremeppu). [lepwa 3adaua
BUHUKIA 3 NPOOTEMU POOUSMHONCEHHA KDOIUKIG 8 A6cmpanii.

Oxpim mozo,, 6 miii dce nonyrayitnitl 6ionozii unukaa 3a0aua, Ko 00uH 6uod noioae inwul (xudxicax i scepmea) La
3a0aya po3e’s3y8andace bazamovma OOCHOHUKAMU 6 2any3i 6ionozii ma meduyunu, 30Kkpema sipyconoeii. Ii vacmunnuil
po38 5130k Hasedenutl ¢ knu3i A. Jlomku, a 6inbws 3aeanvhuil 6 nekyisx B. Bonvmeppu. Yepes ye yi piensmnmus inkoau
Hasusaiomy pieHanna Jlomxa-Bonvmeppu. Ax i 6 nepwiil, max i 6 opyeiti 3a0aui HeoOXiOHO, Wob 06YI0 dOCMAMHBO
pecypey (id1ci) 0na cmayionapno2o cmabinbHO20 ICHYBAHHA MA PO3GUMKY OUHAMIUHOT cucmemu. Hamu npogendeno ananiz
npobiem, ki po3e a3y10msvces abo AKi 00YiNbHO PO38 A3Y8aAMU 3a OONOMO2010 YuUX Memoodis. Takodic npoananizosaui 3a0aui
3 HeOOHOPIOHOIO 4aceol0 iepapxicto npoyecig. [lokazano, wjo 0 po3e a3aHHa MAKUX 3a0ay OOYiNbHO BUKOPUCIOBYBAMU
Memo adiabamuyHo20 BUKNIOYeHHA 3MiHHuX. Lleti memod 6y8 euxopucmanuii 014 po38 sI3aHHA KiHemuuyHux npoorem
6 penaxcayiunii onmuyi.

Li pieHAHHA OOYINbHO BUKOPUCIMOBY8AMU MOOI, KOIU € OeKLIbKA KOHKYpYIouux cungaswux npoyecis. Ha ocnosi
3a2a1bHO20 AHANIZY cUcmeM PieHAHb Bonbmeppu ModicHa nobydyeamu cucmeMmHi Kpumepii yRpasinHa ma npocHo3y8aHHs.
8i0n0GioHUX npoyecie ma Aeuw. /ia nepexody 00 Hpocmoposux 3aoay 8 cucmemu pieHans Bonemeppu ma Jlomka-
Bonvmeppu nompiono 6eecmu 8i0nogioHi koeghiyicumu nepernocy ma ougysii. B ybomy eunaoxy yi pieHAHHA MONCHA TMAKONHC
pOo32nA0amu K cucmemu HeliHIHUX pisHAHb oughysii. Hagooumvca nepenix 3a0ay 015 AKUX 0OYLIbHO BUKOPUCTOBYBAMIL
maxuil popmanizm.

Kniouosi cnosa: ounamiuni npoyecu, Bonvmeppa, Jlomka, adiabamuune uxnouenwHs, Ouqhysiiine po3uiupenis,

NONYIAYIUHI NPoOIeMuU, HeNiHIHA OUHAMIKA.

Introduction

For modeling dynamic (chronological) pro-
cesses, it is advisable to use the formalism of
V. Volterra’s kinetic equation systems (Volterra,
1931). These equations should be used when there
are several competing in-phase processes. Based on
the general analysis of Volterra’s equation systems,
it is possible to construct systemic criteria for con-
trolling and predicting the corresponding processes
and phenomena (Bacaer, 2008).

Let us present the simplest system of two equa-
tions. Depending on the conditions of the problem,
we will consider and analyze problems of four
types: the problem of two species eating the same
food (Volterra, 1931); the predator-prey problem
(Volterra, 1931); the problem with adiabatic elim-
ination (Trokhimchuck, 2020) of a variable and
the problem with diffusion expansionm (Trokhim-
chuck, 2020).

It is shown that the method of aliabatic elimina-
tion of variables is one of the main methods of the
theory of dissipative structures (Glansdorft, 1971)
and synergetics (Haken, 1977).

The problem of diffusion instability for sys-
tems of autonomous equations with the addition

of diffusion terms is investigated. In general, in a
particular case, this can be considered as a diffu-
sion extension of the Volterra equations (Trokh-
imchuck, 2020). The analysis is carried out for a
system of two equations.

The feasibility of using these methods to
describe various evolutionary dynamic processes
of the population type is shown (Trokhimchuck,
2020).

Two species eating the same food

In the second half of the XIXth century, the
problem of rabbits arose in Australia, which proved
to be worthy competitors for farmers. And now
their number fluctuates between 0.6 and 0.7 bil-
lion. This problem was first solved by Vito Volterra
and published at the end of the 19th century in the
journal Acta matematika, published in Stockholm
by Mittag-Leffler (Trokhimchuck, 2020). Later, it
was included in his course of lectures, which were
read at the Sorbonne and published in French (Vol-
terra, 1931).

Consider the problem of two species consuming
the same food (Volterra, 1931).

Suppose that with an amount of food sufficient
to fully satisfy the species under consideration,
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there are constant positive growth coefficients
€,,€, . In areal situation, when these species live in
a limited area, food will decrease with increasing
numbers N, and N, (which mean the number of
species). This will lead to a decrease in the values
of the growth coefficients. If the amount of food
eaten per unit time is represented by the function
F(N,,N,, it turns into zero simultaneously with
the sum N, + N, and monotonically approaches o
together with each of these variables, then it is nat-
ural to take the expressions as growth coefficients

81_Y1F(N13N2)’82_Y2F(N19N2)’ (D

where v,,y, — positive constants corresponding
to the food requirements of each of the two species.

From here we obtain a system of differential
equations that describe the development of both
species (Volterra, 1931):

dN,
72[8]—Y]F(N],N2):|N], (2)
dN.
dtz :[82_Y2F(N1:N2):|N2- (3)

Now the mathematical problem arises of stud-
ying the solutions N,, N, of this system for initial
values N/, NJ, positive for ¢ =t,.

It can be proved that for any finite time interval
(¢,,T) there is a unique solution of two continuous
functions, which are placed between two positive
numbers, of which no longer depends on the end of
the interval 7' (i.e. N,, N, remain bounded).

Let us consider what happens with an unlimited
increase in time. Rewriting (2) and (3) in the form

dlog N,
$ZSI—YIF(N1,N2), (2 a)
dt
dlogN.
L:sz—sz(Nl,Nz), 3 a)
dt
we get
dlog N dlog N.
2 & 1 -" & 2 =&Y, &Y, (4)
and then
vy 02
& = M (erv2=e2m1)(1=10) (5)
szl (Ng )w
We neglect the almost improbable case when
£, ~ &Y, =0, (6)

and suppose (changing the types if necessary) that
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€Y, —¢&,Y, >0 abo N 8—2; (7)
Y1 Y2
Then according to (5) we have
lim—L- = +oo, ®)

til(} N2"1

Since N, is bounded, N, tends to zero.

Thus, we can conclude that the second species,
in which &y has a smaller value, will decrease and
eventually disappear, while the first one continues
to exist (Volterra, 1931).

Two species, one of which eats the other
(predator and prey)

This problem has been solved by many
researchers in the field of biology and medicine,
in particular virology. Its partial solution is given
in the book of A. Lotka (Lotka, 1925), and a more
general one in the lectures of V. Volterra (Volterra,
1931). Because of this, these equations are some-
times called the Lotka-Volterra equations (Trokh-
imchuck, 2020).

If only one of them, namely the prey, were pres-
ent in the environment where these species live,
then it would have a certain growth coefficient ¢, ,
which we will assume to be constant and positive.
The second species (predator), which feeds only (or
mainly) on the prey, assuming that it exists in iso-
lation, has a certain growth coefficient —¢, , which
we will assume to be constant and negative. When
such two species exist in a limited environment,
the first will develop the slower the more individu-
als of the second species exist, and the second — the
faster the more numerous the first species is. The
hypothesis, quite simple, is that the growth rates
are equal to, respectively

g =N, i —&+7,N, )

(y,,v, are positive constants). This leads to a
system of differential equations for describing the
number of species [26]:

dN,

Doy,
(81’827715Y2 >0). (10)

W o NN

dt 2 y2 1 29

We will arrive at the same result with a less
crude study of the interaction of species, reasoning
as follows (Volterra, 1931).

Let us consider the more general case of two spe-
cies, which, existing separately, have growth coef-
ficients A ,A,, the signs of which are not specified.
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In the case of coexistence of these species, we will
assume that the meetings of individuals of different
species (the number of these meetings per unit of
time is equal to aN,N,, where o = const) some-
how affect the number of species. Algebraically,
this effect is expressed by the increments 3, and
B, of the number of individuals corresponding to
n meetings (n is a fixed, sufficiently large number).
We will assume that these increments occur imme-
diately, without delay. Then, over time dt, the spe-
cies increase by

dN, =\ N,dt+oN,N, &dl,
n

dN, =\,N,dt +aN,N, By dt,
n

Thus, we obtain a system of differential equa-
tions (Volterra, 1931):

dN.
Ttl:Nl(}“l"'ulNz)v
11
szzN(eruN) "
dt 2 2 2771 )
where
ol ol (12)
n n

Since encounters are beneficial for predators
and detrimental for prey, in the case we will con-
sider first,

>0, 4, <0, 1, {0, 1,)0. (13)

Therefore, equations (11) takes the form (10)
(Volterra, 1931).

From equations (11) we obtain for any case
(assuming N, >0,N, >0)

dN, dN
HZT;_MTZZZHQ"lNl_HIXZNZ’ (14)
dN,  dN,
Xz%_xl%z:“zklNl_ul}‘ZNZ’ (15)
where
dN, an,
K, le"‘}bz dt —Hy sz_?"] dt =0. (16)

lez e“le — CNzMeHINz . (1 8)

Let us construct the curve (18) in the plane
(N, N,) .
Let us return to the case of predator and prey
considered above, when
Ay=g>0, 4k, =-¢,<0, =—Y1<0, Hy :"/2>0- (19)

To construct this curve, we will draw auxiliary
curves

(L) Y=N"e™™, (20)

(L,) C=Nje"™, (21)
and draw the desired curve based on the relation
Y=CX. (22)

On two perpendicular lines, we mark the axes
Ox,ON, and iOy,ON, (Fig. 1), in the second and
fourth quadrants we draw auxiliary curves L,
and L,.
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Fig. 1. Phase portraits of the predator-prey
problem (Volterra, 1931)

Integrating, we obtain [26]
n,N, + 4, log N, = (i, N, + A, log N, ) = const, (17)

or

dt N, dt N,

In practice, this curve is a phase portrait of the
“predator-prey” problem, on the basis of which we
can consider and analyze various scenarios of this
problem (Svidzinskii, 2009).
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Adiabatic elimination of variables method
If in the system of equations

¥ ==f(%i,81) (23)
the right-hand side does not depend explicitly
on time, i.e. X = = f(?c,ﬁ,é) , then such a system

of equations is called autonomous or self-organ-
ized (self-controlled) (Trokhimchuck, 2020). Here
X is a deterministic phase vector, # is a vector
of control parameters, & is a vector of stochastic
parameters.

The most developed is the system of two non-
linear equations of the first order (on the plane)
(Trokhimchuck (2020). It can always be repre-
sented as a Hamiltonian system and the entire
arsenal of mathematical methods developed in this
area can be applied.

Let us write the system of two equations in the
following form:

x =k (x1’x2) X =1, (xl’x2)'

System (24) will be non-autonomous if

(24)
%
2

Let us consider the case when the variables x,
and x, describe two different subsystems, slow
and fast in time variation. For this case, equation
(24) takes the form

)'cl =k11 +F1 (xl,xz) 5 x2 :_'sz +F'2 (xlaxz)a (25)

where y>0, y>|k,|. The evolution of a fast
subsystem begins with a transient process of dura-
tion t,~y ' <1, ~|k1’1]|.. Further, the evolution
of the system is described by equations (8.2), in
which we can put x, =0:

X =k + (xpxz) » 0=—y, +F, (xlvxz): (25a)

From the second equation we find x, =(x,).
Substitution x, into the first equation allows us to
significantly simplify the problem:

x1:k11+F;(x1a(P(x1))- (26)
This method, based on the selection of char-
acteristic time scales, is called adiabatic elimina-
tion of the variable x,. This approach was first
proposed by G. Haken (Haken, 1977). It can be
concluded that the behavior of the system is deter-
mined by the evolution of the slow subsystem. The
slow subsystem controls the fast one. That is why
the variable x, is called the order parameter.
In multidimensional systems, a small number
of slow variables can be distinguished, to which
all the others are adjusted. Moreover, in many
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cases, it is possible to obtain solutions of the form
X, (t)zF(t,w(Cn)), ¢, = %I’ ne (l,s). ' S}lch
solutions are called self-similar, or self-similar.
The evolution of the system is characterized by
“forgetting” the initial conditions and the forma-
tion of structures determined by functions y(C, ).
Simple structures are combined into various types
of complex structures, to which the eigenvectors of
a nonlinear system of equations can be compared.
Such solutions cannot exist in the vicinity of the
equilibrium state, since the dissipative process
associated with the dissipation of energy destroys
any order. New coherent structures arise in states
far from equilibrium in open systems and are stabi-
lized as a result of energy exchange with the envi-
ronment. Thus, nonequilibrium can be a source of
order, or self-organization. I. Prigozhin called such
order a dissipative structure (Glansdorff, 1971).
The phenomena of self-organization are inherent
in hydrodynamics, chemistry, biology, astrophys-
ics, ecology, economics, sociology. G. Haken
proposed to call this part of the theory of control
synergetics (literally — the theory of joint action)
(Haken, 1977).

Since the systems of Volterra equations are
autonomous equations, it is advisable to use the
Haken procedure for them. Therefore, this method
was tested for the system of three Volterra equa-
tions to describe the processes of Relaxed Optics
(Trokhimchuck, 2008).

Diffusion instability

Let us move on to a more complex example — a
two-component system of the form:

Oou 0u

a_tl =/ (”15”2)+Dl Tzl’

ou o*u
6—2—f2(u],uz)+D2 8x22' 27)

Where D, and D, are the diffusion coefficients.
When D, =D, =0, the system (27) reduces to a
system (24) (Trokhimchuck, 2020). Therefore,
system (27) may be represented as Volterra system
with diffusion expansion too. Adding spatial deriv-
atives, i.e. “turning on” the diffusion coupling of
point elements, can radically change the properties
of the system. Let us begin traditionally with find-
ing and investigating the stability of the homoge-
neity of stationary states. According to (27), these
states are determined from the system of equations

fl(ul,uz)zO, fz(ul,uz)zo. (28)
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Let u, =u'” and u, =u!" are some solutions of
the system (28). To investigate the stability of these
solutions, we write

u (x,0) = +w (x,7), w, (x,0) =ul” +w,y (x,7). (29)

Substituting (29) into (27) and linearizing the
resulting equations by small additions w, and w,,
we obtain a system of two linear partial differential
equations with constant coefficients

ow, o*w
: =fuw + fum, + D, 21 >
ot Ox
(30)
ow o*w

—2=f, W+ foow, + D, —*,
at 21" Y J22"2 Zaxz

where the derivatives f,, = 6%u are calculated
k

at u=u" the solution of system (30) is sought in
the standard form

€2))

Substituting (31) into (30) gives the dispersion
equation

p2—|:]711(61)+J722(Q):|P+]711(Q)'

T (2)= 12 (a) fu(9) =0,

where  £,(¢)=/,-4'D;, [1(9)=fn—4’D;.
We emphasize that at ¢ =0 the dispersion equa-
tion (32) coincides with the dispersion equation for
the corresponding point subsystem. In other words,
the values of the functions p(g), determined by
equation (32), at ¢ =0 coincide with the Lyapunov
exponents of the linearized point system (Trokh-
imchuck, 2020).

Analysis of the dispersion equation (32) shows
that the solutions of equation (27) u, =u'” and
u, =u'”, which are stable in the absence of trans-
port processes, i.e., at D, =D, =0, may lose stabil-
ity when diffusion is “turned on” (Trokhimchuck,

w, (x,t) = Wkexp(pt + iqx), k=12.

(32)

B

=Y

0

2

a. p(q) ()

2020). From the point of view of the dispersion
equation, this means that, although at ¢ = 0 both
of its roots are negative (p,(0) < 0 and p,(0) < 0),
there is an interval of values of ¢ in which at least
one of the roots has a positive real part. The con-
ditions for the existence of such an interval follow
from equation (32). They are written in the form
(Trokhimchuck, 2020)

1)](11 '.fzz _./[12 'f21 <0,
2)f11 'Dz - fzz 'Dl >0,

3)(f11'D2+ fzz'D1)2 >4D1'D2(fll'f22_f12'f21)a
4) fii+ S <0.

From the above it follows that the occurrence of
instability is due to the presence of transport pro-
cesses. Therefore, such instability is called diffu-
sion instability. Its important feature is the require-
ment of the difference of diffusion coefficients:

D #D,, (34)

which follows from the comparison of the sec-
ond and fourth inequalities in (33). Fig. 12 shows
the dispersion curves p, ,(¢) for the cases of absence
and presence of diffusion instability.

Conclusions

1. The systems of Volterra and Lotka-Volterra
kinetic equations and their extensions are analyzed.

2. The problem of two species eating the same
food is investigated. The conditions for the sur-
vival of one of the species are formulated.

3. The “predator-prey” problem is discussed. It
is shown that for its analysis it is worth using the
method of phase diagrams.

4. The problem of adiabatic elimination of var-
iables for systems of autonomous differential equa-
tions is analyzed. It is shown that this procedure
is also successfully used for systems of Volterra
kinetic equations.

(33)

Py
N,
0 _/!?1 @\ g

2\

b. p(q) (g

Fig. 2. Spectral functions p(q), given by the dispersion equation (14.71),
for the stable (a) and unstable (b) homogeneous state (Trokhimchuck, 2020)
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5. The problem of diffusion instability for general, in a particular case, this can be con-
systems of autonomous equations with the sidered as a diffusion extension of the Volterra
addition of diffusion terms is investigated. In  equations.
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