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МОДЕЛЮВАННЯ ТА ОПТИМАЛЬНЕ КЕРУВАННЯ БІОНІЧНИМ ПРОТЕЗОМ 
ВЕРХНЬОЇ КІНЦІВКИ В САГІТАЛЬНІЙ ПЛОЩИНІ

У роботі досліджено процес моделювання та оптимального керування біонічним протезом верхньої кінцівки 
в сагітальній площині. Метою дослідження є створення математичної моделі біонічного протеза верхньої кін-
цівки, моделювання його руху в сагітальній площині та розробка робастного лінійно-квадратичного регулятора 
(LQR) для забезпечення фізіологічно природної реакції ліктьового суглоба з урахуванням кутового положення, 
швидкості та прискорення.

Для опису рухів верхньої кінцівки використано лагранжевий формалізм, що дозволив отримати рівняння руху 
дволанкової моделі руки. Система рівнянь була лінеаризована в околі робочих точок. Для побудови оптимального 
закону керування застосовано методи теорії оптимального керування, зокрема синтез LQR-контролера. Роз-
рахунки та моделювання виконано в середовищі MATLAB із використанням відкритої біомеханічної моделі руки 
OpenSim.
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У роботі поєднано нелінійне динамічне моделювання з апроксимацією у просторі станів для розробки робаст-
ного контролера. Запропонований підхід доводить можливість ефективного відтворення фізіологічних рухів 
верхньої кінцівки з використанням LQR-регулятора. Отримані результати показують здатність системи під-
тримувати стабільність та точність рухів навіть за умов збурень і похибок у вимірах, що наближає її до біоло-
гічних принципів керування.

Розроблений LQR-контролер забезпечує стійке, точне та енергоефективне керування рухами біонічного про-
теза верхньої кінцівки у сагітальній площині. Запропонована модель може бути використана як основа для ство-
рення прототипів високотехнологічних біонічних пристроїв та подальших досліджень у напрямі розширення 
моделі до тривимірного простору та інтеграції нейронних або ЕМГ-сигналів для більш природного керування.

Ключові слова: біонічний протез, динамічне моделювання, сагітальна площина, лінійно – квадратичний 
контролер, OpenSim, MATLAB.
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MODELING AND OPTIMAL CONTROL OF AN UPPER-LIMB BIONIC 
PROSTHESIS IN THE SAGITTAL PLANE

The study investigates the modelling and optimal control of a bionic upper-limb prosthesis in the sagittal plane. 
The aim is to develop a mathematical model of the bionic upper limb, simulate its motion in the sagittal plane, and design 
a robust linear–quadratic regulator (LQR) to ensure a physiologically natural response of the elbow joint, taking into 
account angular position, velocity, and acceleration.

To describe upper-limb motions, the Lagrangian formalism is employed, enabling derivation of the equations of motion 
for a two-link arm model. The system of equations is linearized in the vicinity of operating points. Methods of optimal 
control theory, in particular the synthesis of an LQR controller, are applied to obtain the optimal control law. Computations 
and simulations are carried out in MATLAB using the open biomechanical arm model from OpenSim.



32 33

ISSN 2786-5444 (print), ISSN 2786-5452 (online)

The work combines nonlinear dynamic modelling with a state-space approximation to develop a robust controller. 
The proposed approach demonstrates the feasibility of effectively reproducing physiological upper-limb movements using 
an LQR regulator. The obtained results show the system’s ability to maintain stability and motion accuracy even under 
disturbances and measurement errors, bringing it closer to biological control principles.

The designed LQR controller provides stable, accurate, and energy-efficient control of the bionic upper-limb prosthesis 
in the sagittal plane. The proposed model can serve as a basis for prototyping high-technology bionic devices and for 
further studies aimed at extending the model to three-dimensional space and integrating neural or EMG signals for more 
natural control.

Key words: bionic prosthesis, dynamic modeling, sagittal plane, linear -quadratic regulator, OpenSim, MATLAB.

Вступ. Актуальність проблеми. Дина-
мічне моделювання широко використовується 
дослідниками та інженерами-біомеханіками 
для дослідження проблем у галузі наук про 
здоров’я та інженерії. Це сприяє кращому 
розумінню функціонування людського тіла та 
відкриває можливості застосування моделю-
вання в просторі станів і теорії керування для 
розробки біомедичних допоміжних технологій 
і скелетно-м’язових моделей.

Згідно з (Hussain, 2020; Davoudabadi Farahani, 
2016), віртуальна модель людини здатна іміту-
вати реальні рухи людського тіла та може бути 
корисною в різних сферах: ортопедії, травмато-
логії (Lemieux, 2013; Ali, 2014), ергономіці, роз-
робці спортивного обладнання та підвищенні 
продуктивності (Rasmussen, 2009; Rasmussen, 
2002). Біомеханічні моделі застосовувалися 
для вирішення задач координації рухів, напри-
клад, (Kuo,1995; Golliday,1995; Grzelczyk, 2018; 
Szymanowska, 2018). Однак, більшість розро-
блених методів мають обмежене практичне 
застосування, адже система керування м’язами 
людини враховує багато взаємопов’язаних 
вимог, а центральна нервова система (ЦНС) 
повинна обирати відповідну активацію м’язів 
для забезпечення необхіднх рухів.

Аналіз останніх досліджень і публікацій. 
Якщо відомі початкові умови, сили та моменти, 
що діють на систему, динамічна модель може 
бути використана для прогнозування можли-
вих рухів системи (Yamaguchi, 2007), оскільки 
сили та моменти пов’язані з положенням, 
швидкістю та прискоренням системи динаміч-
ними рівняннями.

Динамічні моделі широко застосовуються 
для аналізу кінематики (Hussain, 2016) і доз-
воляють оцінювати крутні моменти і сили, що 
виникають у кінцівках під час різних рухів. Це 
має важливе значення для зниження ризику 
травматизації. Динамічне моделювання, що 
включає різні методи, такі як метод Кейна, 
метод Лагранжа, методи Ньютона-Ейлера та 

штучні нейронні мережі, дають змогу ортиму-
вати нові знання для створення реабілітаційних 
систем з метою покращення їхньої ефектив-
ності при відновленні функцій верхніх кінцівок 
(Hussain, 2016; Ariff, 2011; Murphy, 2006).

Крім того, на основі кінематичного аналізу 
можна оцінити рух у просторі, використову-
ючи лінійні та кутові переміщення, швидко-
сті й прискорення (Murphy, 2006). Однак, для 
реалістичного відтворення рухів людини необ-
хідний більш точний опис, який забезпечу-
ється динамічним моделюванням. У цій роботі 
динамічне моделювання реалізовано з вико-
ристанням LQR – оптимального керування зі 
зворотним зв’язком, що мінімізує відхилення 
станів системи за умови мінімальних зусиль 
керування.

Мета дослідження. Розробка робастного 
лінійно-квадратичного контролера (LQR) за 
допомогою інструментів MATLAB для отри-
мання фізіологічно природної реакції ліктьо-
вого суглоба, що відповідає кутовому поло-
женню, швидкості та прискоренню.

Завдання дослідження. Для досягнення 
поставленої мети необхідно виконати такі 
завдання:

–	 Дослідити динамічну модель верхньої 
кінцівки методом Лагранжа.

–	 Розробити робастне оптимальне LQR 
керування на основі класичних методів Ляпу-
нова.

–	 Реалізувати моделювання в середовищі 
MATLAB.

–	 Використати відкриту біомеханічну 
модель руки OpenSim (Chadwick, 2011; 
Chadwick, 2014) як об’єкт керування.

Основний матеріал дослідження. Фізичну 
модель руки будемо вважати механічну 
систему, що складається з двох стрижів, як 
це зображено на рис. 1. Довжина стрижнів та 
їх маса відповідно рівні: Верхній стрижень 
під’єднаний одним кінцем до точки підвісу 
та може відносно неї обертатися. До другого 
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кінця верхнього стрижня під’єднаний один із 
кінців нижнього стрижня. Нижній стрижень 
може обертатися відносно верхнього. Однак 
кут, який він утворює з вертикаллю повинен 
бути не меншим за кут між вертикаллю і верх-
нім стрижнем.
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Тоді кінетична енергія центрів мас знахо-
диться за формулою:
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Кінетична енергія обертального руху:
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де І1 та І2 моменти інерції стрижнів відносно їх 
центрів мас.

Підставляючи (3) в (4) та враховуючи (5) для 
кінетичної енергії одержимо:
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Потенціальна енергія складається з потенці-
альних енергій центрів мас. За нульовий рівень 
потенціальної енергії оберемо x = 0, тоді:
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Тепер можемо виписати функцію Лагранжа 
використовуючи (1) :
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У (8) запроваджені наступні позначення:
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Підставляючи (8) у рівняння Лагранжа (2) 
одержимо рівняння руху фізичної моделі руки 
людини:

	

+ + +
+ =
 + - +
+

- -

-
=

-


 

  

1 1 2 1 2 2 2 1 2 2

4 1 1

3 2 2 1 2 1 2 1 2 1

5 2 2

cos( ) sin( )

sin
.

cos( ) sin( )

sin

c q c q q q c q q q

c q U

c q c q q q c q q q

c q U

	 (10)

Рис. 1. Фізична модель руки

Зображену на рис. 1. фізичну модель можна 
розглядати як подвійний фізичний маятник, 
що може здійснювати рух у вертикальній пло-
щині.

Перейдемо до побудови математичної моделі 
такого маятника. Для задання його положення 
в просторі використовуємо дві узагальнені 
координати: q1(t) – кут відхилення верхнього 
стрижня від вертикалі; q2(t) – кут відхилення 
нижнього стрижня від вертикалі.

Для аналізу динаміки фізичної моделі одер-
жимо рівняння руху механічної системи зобра-
женої на рис. 1. В основі використовуватимемо 
лагранжевий формалізм у класичній механіці. 
Виразимо кінетичну  та потенціальну U енер-
гії через узагальнені координати, і запишемо 
функцію Лагранжа.

	 L = Ek - U.	 (1)

Маючи функцію Лагранжа можемо отри-
мати рівняння руху розглядуваної системи, 
використовуючи загальний вигляд Лагранжа:

	 ∂ ∂
- = =

∂ ∂
, 1,2i

i i

d L L
U i

dt q q
	 (2)

Кінетична енергія системи складається 
з кінетичних енергій центрів мас стрижнів 
та кінетичних енергій їх обертального руху 
навколо центрів мас.

Виразимо декартові координати центрів мас 
через узагальнені координати:
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Поділимо перше рівняння системи (10) на c1 
і позначимо:

= =2 4
1 2
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, .
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Тоді отримаємо рівняння руху в матричній 
формі:
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c q q q

 
   = =      

 




1
2 1

1

5 2
2

sin
,  .

sin

U
d q

cg U
c q

U

Рівняння (11) є диференціальним рівнянням 
другого порядку, воно є нелінійною математич-
ною моделлю, що описує динамічні властиво-
сті руки людини.

Як відомо стан механічної системи одно-
значно задається узагальненим координатами 
та узагальненими швидкостями. Тоді матема-
тична модель (11) в термінах вектора стану 
 
 
 




q

q
 трансформується у рівняння стану пер-

шого порядку:

-

 =

 = - -


 
 

 

     1( ).( ) ( ), ( )

d
q q

dt
d

q M q U c q q g q
dt

(12)

(13)

Права частина рівняння (13) є нелінійною 
функцією:

=
  ( , , )f f q q U

і саме через цю функцію маємо, що наша мате-
матична модель є нелінійною. Однак, якщо роз-
глядати рух в околі певної точки 

 
0 0 0( , , ),q q U  то 

рівняння (13) можна лінеаризувати.
Оберемо деяку операційну точку

   
0 0 0 0, , , ,q q q U

яка задає стан системи, прискорення в цьому 
стані та значення керуючих зусиль. Перепи-
шемо рівняння (13) у вигляді

	 = - =
          ( , , , ) ( , , ) 0.F q q q U f q q U q 	 (14)

Виконаємо розклад функції 

F  в ряд в околі 

операційної точки, зберігаючи доданки не вище 
лінійних.

	

∂ ∂
+ ∆ + ∆ +
∂ ∂

∂ ∂
+ ∆ + ∆ =

∂∂

 

 

 
   



 

   
 

 



 

0 0

0 0

0 0 0 0( , , , )

0.

q q

q U

F F
F q q q U q q

q q

F F
q U

Uq

	 (15)

В операційній точці перший доданок дорів-
нює нулеві, тоді враховуючи (14) можемо (15) 
переписати у вигляді

	
00 0

  .∂ ∂ ∂
= ∆ + ∆ + ∆
∂ ∂ ∂  




    
Uq q

f f fq q q U
q q U

	 (16)

Представлена рівнянням (16) лінійна 
модель є апроксимацією нелінійної сис-
теми в околі операційної точки. Такий підхід 
широко використовується в теорії управління 
оскільки лінійні моделі набагато простіше 
аналізувати та контролювати, ніж нелінійні. 
Однак варто зауважити, що лінеаризована 
модель є лише апроксимацією оригінальної 
системи, а її точність залежить від вибору опе-
раціної точки та величини відхилень від цієї 
точки. Для великих відхилень від операцій-
ної точки лінеаризована модель може давати 
неточні результати, а в деяких випадках може 
привести і до втрати важливої інформації про 
динаміку нелінійної системи.

Розпишемо рівняння (16) більш детальніше.

Враховуючи, що вектор 
 

=  
 

 1

2

q
q

q
 складається 

з двох компонент:

/

∂ ∂ ∂
= + + =
∂ ∂∂

∂ ∂ ∂
= + + +
∂ ∂ ∂

∂ ∂ ∂
+ + + =
∂ ∂ ∂

 
   ∂ ∂ ∂ ∂ ∂ ∂ = +    ∂ ∂ ∂ ∂ ∂ ∂    

 
 


 

 





 

  
  







 



00 0
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0 0 0
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1

1 1 1
1 2 1

1 2 1

1 1 1
2 1 2

2 1 2

1

1 1 1 1 1 1
2

1 2 1 2 1 2
1

2

Uq q

q q q

q U U

f f f
q q q U

q Uq

f f f
q q q

q q q

f f f
q U U

q U U

q
Uf f f f f f

q
q q q q U U

q

q

 
 
 

1

2

.
U

	 (17)

Аналогічно можемо написати для 2:q
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 
    ∂ ∂ ∂ ∂ ∂ ∂ = +     ∂ ∂ ∂ ∂ ∂ ∂      

 
 





 



1

12 2 2 2 2 2
2 2

21 2 1 2 1 2
1

2

.

q
Uf f f f f f

q q
Uq q q q U U

q

q

	(18)

Рівняння (12), (17), (18) можна представити 
у вигляді одного матричного

	 = +
 

.x Ax BU 	 (19)

Тут запроваджені матриці:

   
   = =   
   ∂ ∂ ∂ ∂
   ∂ ∂ ∂ ∂   

 ∂ ∂ ∂ ∂
 
∂ ∂ ∂ ∂ 




 

 

1

2

1 1 1 1 1

1 2 1 22

2 2 2 2

1 2 1 2

0 0 1 0

, 0 0 0 1 ,

q

x q A

q f f f f

q q q qq

f f f f

q q q q

	
 

  = =      ∂ ∂
 ∂ ∂ 
 ∂ ∂
 
∂ ∂ 


1

2
1 1

1 2

2 2

1 2

0 0

0 0 , .
U

B U
U

f f

U U

f f

U U

	 (20)

Для вектора 
 

=  
 




 1

2

q
y

q
 на основі (17) і (18) 

одержимо:

	 = +
 

,y Cx DU 	 (21)

якщо запровадити матриці

 

∂ ∂ ∂ ∂ ∂ ∂   
   ∂ ∂ ∂ ∂ ∂ ∂   = =
   ∂ ∂ ∂ ∂ ∂ ∂
   ∂ ∂ ∂ ∂ ∂ ∂   

 

 

1 1 1 1 1 1

1 2 1 2 1 2

2 2 2 2 2 2

1 2 1 2 1 2

, .

f f f f f f

q q q q U U
C D

f f f f f f

q q q q U U

Співвідношення (19) і (21) є лінійною 
моделлю, якою апроксимується нелінійна мате-
матична модель руки в околі операційної точки.

Для знаходження числових значень елемен-
тів матриць А, В, С, D необхідно знайти явні 
вирази для функцій f₁, f₂, та обчислити відпо-
відні похідні в операційній точці. В матричній 
формі для маємо:

	 -= - -
           1( , , ) ( , , ) ( ) .( )f q q U M U C q q q q g q 	 (22)

Тут - 1M  – обернена до M  матриця, її еле-
менти легко обчислюються, в результаті

	

-



-
= ×

- 
× - 

-

-
-

 1
2

3 2 1 1 2

3 1 1 2

2 1 2

1

cos

cos( )
.
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( )

( ) 1

M
c c d q q

c d q q

c q q

	 (23)

Підставляючи в (22), (11) та (23) одержимо 
вирази для f1 та f2:

= ×

 - - + × 
-

- -

-

- - -


 + 


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1 2
3 2 1 1 2

23 1
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1
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1 1 2 5 2 2 2 1 1 2
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( )
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f
c c d q q

c U
c d q q q c d q

c

d q q c q U c q q q

	(24)

= ×

 + - +
× 
+ -

-



-

-

- - + 


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2 2
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2
2 2 1 1 2 5 2

2
1 2 2 2 1 1 1 2 1 2 1 2

1

cos

sin( )  sin
 .

c

( )

os( )( sin sin( ))

f
c c d q q

U c q q q c q

q q c d q d U c d q q q

	(25)

Розробка LQR-керування. Ґрунтуючись на 
відомій теорії (Kuo, 1995; Brian, 1989) розробки 
LQR-керування, у цьому досліджені ми розро-
бляємо та проєктуємо LQR-контролер, за якого 
траєкторії станів мінімізують цільову функцію 
з відповідними матрицями, що зважують відхи-
лення станів від номінальних значень.

Розроблене LQR-керування забезпечує кое-
фіцієнти зворотного зв’язку, які гарантують ста-
більну та плавну траєкторію зміни стану системи.

Щоб перевести систему до цільових значень 
стану =( ) ,x t x  введемо нові змінні y та викона-
ємо заміну = + ,( )t x yx  = + .U U v

Тут керуючий вплив u  обирається з умови 
+ = 0.Ax BU

Отримуємо -= - 1U B Ax  і нова система набу-
ває вигляду:

= +y Ay Bv

має нульове положення рівноваги.
Наша мета полягає в тому, щоб знайти 

матрицю підсилення керування K, щоб керо-
вана система

  = - ( - )U U K x x

досягала асимптотичної стабільності, а також 
оптимізувала функціонал вартості.

∞

 = - - + - - ∫
0

(  ) ( ) (  ) ( ) .T TJ x x Q x x U U R U U dt

Тут Q і R – матриці вагових коефіцієнтів для 
відхилень станів x і керувань u від їхніх номі-
нальних значень, відповідно.
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Закон керування u(x) асимптотично приво-
дить систему до цільового значення .x

Розв’язавши алгебраїчне рівняння Ріккаті, 

PA + ATP - PBR-1BTP = 0,

отримаємо матрицю підсилення K = R-1BTP. 
Цей контролер створює стабільність системи та 
її перехід до цільових значень, що підтверджує 
оптимальність і асимптотичну стабільність 
системи похибок, яка описується рівнянням 
Гамільтона–Якобі–Беллмана.

Нелінійну динаміку дволанкової структури 
було лінеаризовано навколо робочих точок. 
Тоді ми можемо записати апроксимовані 
лінійні моделі системи. У результаті, страте-
гію LQR-керування можна визначити як рух 
суглобів, що ініціюється нейронним зусиллям, 
пов’язаним з природними рухами.

Отримаємо лінеаризовану систему, яка має 
вигляд

= + ,x Ax BU

де системні матриці A, B, C, D мають наступний 
вигляд:

Для стаціонарного положення (робоча 
точка 1): ( )=1 1

0 0, 0;0;0;0 ,[0;0][ ]x U

 
 =  
 -
 

- 

1

0 0 1 0

0 0 0 1 ,

54.09 23.49 0 0

76.33 67.78 0 0

A

 
 
 
 -
 
-

=



1

0 0

0 0
,

1.061 1.497

1.497 4.32

B

- 
 


=

-
1

54.09 23.49 0 0
,

76.33 67.78 0 0
C

- 
 - 

=1

1.061 1.497
.

1.497 4.32
D

Робоча точка 2: цільова позиція q1 =180°, 
q2 =180°.

 
 =  
 -
 
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1
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A

 
 
 
 -
 
-

=



1

0 0

0 0
.
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B .

Робоча точка 3: цільова позиція q1 = 90°, 
q2 = 90°.

 
 =  
 -
 

- 

1

0 0 1 0

0 0 0 1 ,
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A
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Робоча точка 4: q1 = 0°, q2 = 90°.

 
 =  
 - -
 
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1
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 
 
 
 
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=1

0 0

0 0
.
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0.0001558 2.206

B

ЦНС поводиться лінійно в околі обраних 
робочих точок, що відповідають бажаному 
руху. Обчислені дані були зібрані у відповідну 
базу даних, доступну для вибору стратегії 
контролера.

Експерементальні результати. Вико-
ристовуючи відповідні набори інструментів 
MATLAB та моделі плеча OpenSim, ми визна-
чаємо робочу точку як еталонні значення кутів, 
прискорень і швидкостей, отримані з проведе-
них експериментів. В результаті ми отримуємо 
довідкову таблицю для оцінювання контролера. 
Контролер використовує дані робочих точок, 
беручи початкові та еталонні значення з довід-
кової таблиці.

Було проведено серію експериментів для 
моделі тіла з наступними параметрами: маса 
тіла 75 кг, зріст 182 см.
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Таблиця 1
Типові параметри руки, отримані з моделі 

OpenSim

Позначення Величина Значення Одиниця 
вимірювання

m1 Маса ланки 1 1.4 кг
m2 Маса ланки 2 1.1 кг

r1
Довжина 
ланки 1 0.3 м

r2
Довжина 
ланки 2 0.33 м

I1
Момент інерції 

ланки 1 0.025 кг ∙ м2

I2
Момент інерції 

ланки 2 0.045 кг ∙ м2

Експериментальні дані моделі отримано 
з віртуальної установки OpenSim. Необхідні 
експериментальні дослідження були проведені 
в реальному часі для забезпечення подальшого 
аналізу в середовищі MATLAB. Віртуальний 
полігон представлено на рис. 2, а відповідну 
технологічну схему – на рис. 3.

З метою проведення аналізу та отримання 
реальних даних, які використовуються як ета-
лонні значення для моделювання закону керу-
вання, було виконано експериментальне тес-
тування та аналіз даних (рис. 2–4). Отримані 
еталонні значення було зібрано, перетворено, 
проаналізовано, конвертовано у відповідні оди-
ниці вимірювання, а потім використано для 
моделювання контролера. Використовуючи 
інструменти аналізу даних CFTool, доступні 
в MATLAB, ми обчислюємо еталонні значення 
станів системи відповідно до проведених екс-
периментів.

Для створення відповідної довідкової 
таблиці з метою оцінювання контролера було 
проведено серію експериментів. Контролер 
отримує початкові та еталонні значення з попе-
редніх експериментальних даних, зібраних 
у відповідній довідковій таблиці, з якої і виби-
раються еталонні значення.

Для оцінювання розробленого закону керу-
вання ми використовуємо Control System 
Toolbox MATLAB для розв’язання рівняння 
Ріккаті та функцію ode45 для моделювання 
динамічної системи. За допомогою функції 
MATLAB care ми обчислюємо X – розв’язок 
рівняння Ріккаті. Ми обираємо матриці вагових 
коефіцієнтів R і Q та приводимо стани і керу-
вання до їхньої цільової заданої точки.

Експеримент 1.
Для робочої точки 2 з цільовою позицією 

q1 = 180°, q2 = 180°, ми обираємо матриці ваго-
вих коефіцієнтів:

 
  = =      

 
 

0.9 0 0 0
1.3 0

 0 2.1 0 1 ,  .
0 1

0 0 2.2 0

0 0 0 3

Q R

отримуємо матрицю робастного керування

 
=  - - 

93.43 7.63 17.62 4.7
 .

32.16 28.81 2..30 3.58
K

Коефіцієнт підсилення керування становить

 
 
 =
 
 
- 

0

0
 .

256.4

493.74

U

Результуючу керовану траєкторію для ста-
нів q1, q2 можна побачити на рис. 2.

Рис. 2. Керована траєкторія

Експеримент 2.
Для робочої точки 3 з цільовою позицією 

q1 = 90°, q2 = 90°, ми обираємо ті самі матриці 
вагових коефіцієнтів Q, R. Отримуємо коефіці-
єнт підсилення керування, що дорівнює

 
 
 =
 
 
- 

0

0
.

128.4

246.87

U

Отриману траєкторію керованого руху 
можна побачити на рис. 3. для станів q1, q2.

Експеримент (3).
Для робочої точки 4 з цільовою позицією 

q1 = 0°, q2 = 90°,обиремо матриці вагових кое-
фіцієнтів:
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Рис. 3. Керовані стани, що відстежують задані 
значення

  
 

  = =      
 
 

0.3 0 0 0
1.1 0

0 2.2 0 1 , ,
0 1

0 0 1.2 0

0 0 0 2

Q R

отримуємо матрицю робастного керування

- - 
=  - - 

18.8 13.08 4.8 1.60
 .

28.36 21.25 7.18 4.29
K

Коефіцієнт підсилення керування становить

 
 
 =
 
 
 

0

0
.

15.43

147.21

U

Отриману траєкторію керованого руху 
можна побачити на рис. 4. для станів q1, q2.

Розроблений LQR-контролер демонструє 
стабільну траєкторію станів, робастність, 
малу похибку у усталеному режимі, швидку 
реакцію та є адекватною моделлю біологіч-
них контролерів. Отримані траєкторії керова-
ного руху наближаються до заданого значення, 

у порівнянні з іншими експериментальними 
даними.

Коефіцієнти керування добре апроксиму-
ють поведінку системи, забезпечують швидке 
досягнення цільових значень, як показано на 
рис. 2–4. Керування забезпечує робастність, 
плавну зміну траєкторії, стабілізацію, збіжність 
похибки оцінювання до нуля та мінімізацію 
енергії та зусиль керування.

Висновки. У цій роботі розроблено робастне 
оптимальне керування, отримано експеримен-
тальні стани та їхню якісну реалізацію моделі 
на основі техніки LQR-керування. Результати 
можуть бути використані для визначення пара-
метрів оптимізації функціональних власти-
востей удосконалених прототипів, визначення 
умов оптимальної механічної структури, ста-
білізації рухів і параметрів оптимального інте-
лектуального керування. Отримані результати 
сприяють вирішенню проблем реабілітації 
людей з обмеженими можливостями верхніх 
кінцівок на основі технологій математичного та 
комп’ютерного моделювання складних систем 
із застосуванням засобів системного аналізу, 
теорії стійкості та керування.

Рис. 4. Керовані стани

ЛІТЕРАТУРА:
1.	 Hussain Z., Azlan N. Z. 3-D Dynamic Modeling and Validation of Human Arm for Torque Determination 

During Eating Activity Using Kane’s Method. Iranian Journal of Science and Technology. Transactions of Mechanical 
Engineering. 2020. Vol. 44, No. 3. DOI: https://doi.org/10.1007/s40997-019-00299-8

2.	 Davoudabadi Farahani S., Svinin M., Andersen M. S., de Zee M., Rasmussen J. Prediction of closed-chain human 
arm dynamics in a crank-rotation task. Journal of Biomechanics. 2016. Vol. 49, No. 13. P. 2684–2693. DOI: https://doi.org/ 
10.1016/j.jbiomech.2016.05.034

3.	 Lemieux P. O., Tétreault P., Hagemeister N., Nuno N. Influence of prosthetic humeral head size and medial offset 
on the mechanics of the shoulder with cuff tear arthropathy: A numerical study. Journal of Biomechanics. 2013. Vol. 46, 
No. 4. P. 806–812. DOI: https://doi.org/10.1016/j.jbiomech.2012.11.021

4.	 Ali N., Andersen M. S., Rasmussen J., Robertson D. G. E., Rouhi G. The application of musculoskeletal modeling 
to investigate gender bias in non-contact ACL injury rate during single-leg landings. Computer Methods in Biomechanics 
and Biomedical Engineering. 2014. Vol. 17, No. 14. P. 1602–1616.



40 41

Фізика та освітні технології, Вип. 2, 2025
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