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ДОСЛІДЖЕННЯ КУТОВОГО РОЗТАШУВАННЯ ТОЧОК ЛАГРАНЖА

У роботі проведено теоретичне дослідження точок Лагранжа для обмеженої задачі трьох тіл з викорис-
танням полярної системи координат. Використовуючи ефективний гравітаційний потенціал було побудовано 
співвідношення, які описують кутове та радіальне розташування точок Лагранжа в залежності від співвід-
ношення характерних параметрів системи. Для одержання аналітичних виразів була застосована теорія збу-
рень, малим параметром якої є відношення мас головних компонент системи. Використання полярних координат 
дозволило в явному вигляді описувати кутовий розподіл точок рівноваги. Було показано, що кутове положення 
точок Лагранжа L4 та L5, в залежності від співвідношення мас двох головних компонент, буде змінюватися 
в межах від π/3 до π/2. Одержаний результат було підтверджено на прикладах зоряних систем Groombridge 34, 
HD 155358 та HD 69830, для яких виконується різні співвідношення мас в діапазонах від 0,443 ⋅ 10-5 до 0,383. 
Одержане в роботі співвідношення, яке описує кутовий розподіл точок Лагранжа, було застосоване для дослі-
дження екзопланетної зоряної системи PDS 70. На основі аналізу зображень зоряної системи PDS 70 було визна-
чене кутове положення газопилової хмарини, яка розташована на орбіті екзопланети PDS 70b. З іншого боку, 
було розраховане кутове розташування цієї хмарини на основі відомостей про масу центральної зорі в системі 
PDS 70 та масу екзопланети PDS 70b. У результаті досліджень показано, що хмара пилу, в якій формується 
нова планета, розташована у точці Лагранжа L5 системи PDS  70 – PDS  70b. Цей результат підтверджує 
гіпотезу про те, що на орбіті екзопланети PDS 70b формується ще одна «троянська» екзопланета. Це дозволяє 
нам стверджувати, що коорбітальні конфігурації, відомі у Сонячній системі (наприклад, троянські астероїди 
Юпітера), є універсальним явищем, здатним виникати і в екзопланетних системах.

Ключові слова: точки Лагранжа, полярні координати, кутовий розподіл, екзосистема PDS 70, коорбітальні 
конфігурації, троянські екзопланети.
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INVESTIGATION OF THE ANGULAR DISTRIBUTION OF LAGRANGE POINTS

This work presents a theoretical investigation of the Lagrange points for the restricted three-body problem using 
the polar coordinate system. Employing the effective gravitational potential, relationships were derived to describe 
the angular and radial positions of the Lagrange points as functions of the characteristic parameters of the system. 
To obtain analytical expressions, perturbation theory was applied, with the small parameter being the mass ratio 
of the primary components of the system. The use of polar coordinates allowed the explicit description of the angular 
distribution of the equilibrium points. It was shown that the angular position of the Lagrange points L4 and L5, depending 
on the mass ratio of the two primary components, varies within the range from π/3 to π/2. The obtained result was 
confirmed with examples of the stellar systems Groombridge 34, HD 155358, and HD 69830, which exhibit different 
mass ratios in the range from 0,443 ⋅ 10-5 to 0,383. The relationship describing the angular distribution of the Lagrange 
points derived in this work was applied to the study of the exoplanetary system PDS 70. Based on the analysis of images 
of the PDS  70 system, the angular position of a gas–dust cloud located on the orbit of the exoplanet PDS 70b was 
determined. Additionally, the angular position of this cloud was calculated using the known mass of the central star in 
the PDS 70 system and the mass of the exoplanet PDS 70b. The results show that the dust cloud in which a new planet is 
forming is located at the L5 Lagrange point of the PDS 70 – PDS 70b system. This finding supports the hypothesis that 
another “Trojan” exoplanet is forming in the orbit of PDS 70b. It also allows us to assert that co-orbital configurations, 
known in the Solar System (e.g., Jupiter’s Trojan asteroids), are a universal phenomenon capable of arising in exoplanetary 
systems.

Key words: Lagrange points, polar coordinates, angular distribution, PDS 70 exosystem, co-orbital configurations, 
Trojan exoplanets.

Вступні зауваги. Точки Лагранжа є особли-
вими рівноважними положеннями в обмеженій 
задачі трьох тіл, у яких результуюче гравітаційне 
поле та відцентрові сили перебувають у точному 
балансі [1, 2]. Традиційно їхні властивості вивча-
ються у декартових координатах, що зручно для 
розв’язання задач класичної небесної механіки. 
Водночас перехід до формалізму полярних коор-
динат (r, q) дає змогу виділити кутову компо-
ненту q, що визначає орієнтацію точок рівноваги 
у площині орбіти та відкриває додаткові можли-
вості для аналізу кутової стабільності [3, 4].

Дослідження кутового розподілу точок 
Лагранжа має як теоретичне, так і прикладне 
значення. У прикладній небесній механіці воно 
є важливим для планування траєкторій косміч-
них апаратів у точках L1 та L2, де навіть неве-
ликі зміни кутових параметрів можуть впли-
вати на довготривалу стабільність орбіти [5, 6]. 
У динаміці малих тіл Сонячної системи куто-
вий аналіз дозволяє визначити закономірності 
розташування троянців, об’єктів групи Грека та 
інших резонансних популяцій, а також виявити 
наслідки зіткнень і гравітаційних збурень [7, 8].

Класичні роботи Лагранжа [1] та Себехелі [2] 
заклали фундамент для дослідження рівноваж-
них точок і орбітального резонансу. Подальший 
розвиток теорії наведено у працях Мюррея та 
Дермотта [3], а також Ґомеса з колегами [4], де 
розглядаються динамічні моделі руху поблизу 
точок Лагранжа і можливості їхнього практич-
ного використання.

Сучасні дослідження значно розширили 
знання про кутові характеристики цих точок. 
Зокрема, місія NASA Lucy [5] зосереджена 
на вивченні троянців Юпітера з урахуванням 
їхнього просторового та кутового розподілу, 
що має безпосереднє значення для вибору 
оптимальних траєкторій прольоту. У роботі 
[6] запропоновано чисельне моделювання роз-
поділу земних троянців із визначенням харак-
терних кутових координат, зручних для їхнього 
виявлення. Дослідження проведене у роботі 
[7] дало комплексні дані про форми, обертання 
та нахили осей троянців, що опосередковано 
відображають їхню кутову орієнтацію в орбі-
тальному просторі. У роботах [8, 9] досліджено 
кутові особливості фрагментів астероїдних 



122 123

Фізика та освітні технології, Вип. 2, 2025

кластерів у точці L5 Марса, що важливо для 
моделювання післязіткненевої еволюції.

Інший аспект дослідження точок Лагранжа 
пов’язаний з виявлення троянських екзопла-
нет. Він має фундаментальне значення для 
сучасної астрономії та планетології. Такі 
об’єкти демонструють, що коорбітальні конфі-
гурації, відомі у Сонячній системі (наприклад, 
троянські астероїди Юпітера), є універсаль-
ним явищем, здатним виникати і в екзопланет-
них системах. Їхнє існування надає унікальну 
можливість простежити ранні етапи форму-
вання планет, коли матеріал у точках Лагранжа 
L4 та L5 може конденсуватися у стабільні тіла. 
Крім того, троянські екзопланети є ключовим 
тестом для моделей динамічної стабільності, 
міграції планет та накопичення планетези-
малей, що дозволяє уточнювати теоретичні 
сценарії еволюції планетних систем [10, 11]. 
Формалізм полярних координат у цьому кон-
тексті є особливо зручним, оскільки дає змогу 
виокремити кутову динаміку та безпосередньо 
пов’язати її з характеристиками ефективного 
потенціалу системи.

Таким чином, дослідження кутового розпо-
ділу точок Лагранжа у формалізмі полярних 
координат є актуальним напрямком, який поєд-
нує теоретичну новизну з прикладною цінні-
стю для космічної навігації, динаміки малих 
тіл і фундаментальних досліджень гравітацій-
но-зв’язаних систем багатьох тіл.

Виклад основного матеріалу й обґрунту-
вання отриманих результатів. Розглянемо 
замкнену систему, яка складається із трьох тіл 
із масами m1, m2 та m3 розташованими, як пока-
зано на рис. 1. Будемо вважати, що тіла знахо-
дяться в одній площині і між ними діє лише 

гравітаційна взаємодія. Ще одним модель-
ним припущенням буде те, що третє тіло має 
набагато меншу масу у порівнянні з першим 
та другим. Таке припущення дозволить нам 
знехтувати впливом третього тіла на рух пер-
шого і другого. Нашою метою буде описати рух 
третього тіла у гравітаційному полі першого 
та другого. Початок відліку полярної системи 
координат помістимо в центр мас головних 
компонент m1 та m2.

Аналіз почнемо з ефективного потенціалу 
для обмеженої задачі трьох тіл, який в системі 
відліку, яка обертається з кутовою швидкістю 
W матиме наступний вигляд

	 2 2( ) (
1

, .)
2eff gravV r V r rq = - Ω 	 (1)

Тут Vgrav(r) є гравітаційний потенціал, який 
визначається співвідношенням:

1 2

1 2

.( )grav

Gm Gm
V r

r r
= - -

′ ′

У полярних ефективний потенціал (1) буде 
мати вигляд:

	

1
1

2 2 2
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2 22
1

2 2 2
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,

2 cos
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2
2 c s

eff

Gm
V r

r rr r

Gm
r
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	 (2)

В околі точок Лагранжа компоненти век-
тору сили, що діє на третє тіло мають дорівню-
вати нулеві. Ці умови дадуть нам рівняння для 
визначення точок Лагранжа. Розглянемо азиму-
тальну складову вектору сили:
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Враховуючи, що
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,
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 2 2

2 2
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,
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одержуємо

	 1 1 2 2
3 3 3

1 2

sin .
m r m r

F Gm
r rq

  
= q -  ′ ′  

	 (3)Рис. 1. Геометрія системи трьох тіл 
у полярних координатах
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З означення центу мас слідує умова 
m1r1 = m2r2. Тоді формула (3) набуде вигляду:

	 3 1 1 3 3
1 2

1 1
sin .F Gm m r

r rq

  
= q -  ′ ′  

	 (4)

Прирівняємо азимутальну силу Fθ до нуля, 
адже, як зазначалося раніше в точках Лагранжа 
азимутальна складова сили дорівнює нулю. 
Одержуємо рівняння

	 3 3
1 2

1 1
sin 0.

r r

 
q - = ′ ′ 

	 (5)

Аналіз рівняння (5) показує, що існує три 
різні випадки у яких воно задовольняється, 
а саме:
	  1 20, , .r r′ ′q = q = p = 	 (6)

Перший випадок відповідає точкам 
Лагранжа L1, L2, другий – точці L3, а третій – 
точкам L4, L5. Як бачимо, що у формалізмі 
полярних координатах доволі прозоро вини-
кають умови, які задають положення точок 
Лагранжа відносно осі, що з’єднує головні 
компоненти системи.

Перейдемо до розгляду радіальної складо-
вої сили, яка діє на третє тіло. Використовуючи 
вираз для ефективного потенціалу (2) отриму-
ємо наступне співвідношення для радіальної 
компоненти сили, що діє на третє тіло збоку 
першого та другого
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Скористаємося співвідношеннями

1 1

2 2
1 1

cos
. 

2 cos

r r r

r r rr r

′∂ + q
=

∂ + q+

2 2

2 2
2 2

cos
.

2 cos

r r r

r rr r

′∂ - q
=

∂q - q+

Остаточно радіальна складова сили (7) буде 
мати вигляд:
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У точках рівноваги має виконуватись умова  
Fr = 0. Таким чином приходимо до рівняння:
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Для зручності аналізу рівняння (9) перейдемо 
до безрозмірної форми. Це дозволить в подаль-
шому виокремити доданки з різними порядками 
мализни, і, таким чином, спростити дане рів-
няння. Для цього запровадимо позначення:

	 1 2 2
1 2

2 2 2 1

, , , .
r r r m

x x x
r r r m

′ ′
′ ′= = = μ = 	 (10)

У нових змінних (10) рівняння (9) набуде 
вигляду

	 3 3 2
1 2

cos ( cos )
0.

(1 )

x x x

x x

+μ q μ - q
- - + =

′ ′ + μ
	 (11)

Координати точок Лагранжа будуть визнача-
тися з рівняння (11) та умов (6). Точки L1 та L2, 
як зазначалося раніше, визначаються умовою 
θ = 0, яку накладемо на рівняння (11). Зі спів-
відношень (10) для безрозмірних координат 
одержуємо вирази
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Для випадку θ = 0 рівняння (11) набуває 
вигляду

	
( ) ( ) ( )2 2 2

1
0.

1 1

x

x x

μ
- + =

+μ - +μ
∓ 	 (12)

Верхній знак біля другого доданка від-
повідає випадку x > 1 (точка L2), а нижній 
знак – випадкові x < 1 (точка L1). Перший дода-
нок в рівнянні (12) описує притягання третього 
тіла до першого, другий – притягання третього 
тіло до другого, а третій – інерційний. За своєю 
структурою рівняння (12) є алгебраїчним рів-
нянням п’ятого степеня відносно невідомого 
x. Дане рівняння може бути зведене до форми 
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Брінга рівняння п’ятого степеня, що дозволяє 
в подальшому виразити кінцевий розв’язок 
через еліптичні функції [12]. Альтернативний 
підхід до відшукання розв’язку рівняння (12) 
заснований на використанні чисельних методів 
на кшталт методу Ньютона-Рафсона. У даній 
роботі ми підемо іншим шляхом, пов’язаним 
з використанням наближених обчислень, що 
дозволить отримати аналітичні вирази для 
координат точок Лагранжа. У переважній 
більшості реальних космічних систем трьох 
тіл маса одного з компонент набагато перева-
жає масу двох інших (наприклад Сонце, Юпі-
тер, астероїди Троянці). Це означає, що радіус 
орбіти третього тіла повинен бути близьким до 
радіуса орбіти другого тіла. Тому для подаль-
шого аналізу припустимо, що r ≈ r2 + ∆r. Тоді

	 2

2 2

1 1 .
r r r r

x
r r r

+ ∆ ∆
= = = + = + ξ 	 (13)

Тут 1.
r

r

∆
ξ = 

Із врахуванням (13) рівняння (12) набуває 
вигляду:

	
( ) ( )2 22

1 1
0.

1 1

μ + ξ
- + =

ξ+ ξ +μ +μ
∓ 	 (14)

Виконуючи розклади першого та третього 
доданків у (14) в ряд Тейлора, одержуємо 
наступні корені рівняння:

3
1,2 .

3

μ
ξ = ∓

Тоді на основі (13) знаходимо координати 
розташування першої та другої точок Лагранжа

	 3
1,2 1,2 1 .

3
x x

μ
= + ξ = ∓ 	 (15)

Аналогічним чином знаходяться координати 
положення точки L3, яка відповідає умові θ = π. 
У результаті одержуємо

3

17
,

12
ξ = μ

	 3 3

17
1 .

12
x x= + ξ = + μ 	 (16)

Одержані результати (15) та (16) узгод-
жується з координатами положень точок 
Лагранжа L1, L2 та L3 розрахованими у фор-
малізмі декартових координат [3]. Відзначимо 
простоту і прозорість розрахунку положень 

колінеарних точок Лагранжа у розглянутому 
в роботі методі полярних координат. Проте 
особливу продуктивність методу полярних 
координат можна побачити під час розрахунку 
кутового положення точок L4 та L5. Під час їх 
розрахунку у формалізмі декартових припуска-
ється, що через симетрію вихідного рівняння 
рівноваги сил, точки L4 та L5 розташовані на 
кутовій відстані ±π/3. Як можна буде переко-
натися у подальшому висліді з використанням 
полярних координат, кутове положення точок 
L4 та L5 може змінюватися в межах (π/3 - π/2)  
в залежності від співвідношення мас системи.

Розглянемо третю з умов (6). Одержуємо

1 2 ,r r′ ′=
2 2 2 2

1 1 2 22 cos 2 cos .r rr r r rr r+ q+ = - q+

Звідси

	 ( )
2 2

2 1 2 1

1 2

cos .
2 2

r r r r

r r r r

- -
q = =

+
	 (17)

Співвідношення (17) дозволяє переписати 
вирази для відстаней від першого та другого 
тіла до третього 1r′  та 2r′  у вигляді:

2 2
1 2 1 1

2 2 22 1
1 1 1 2

2 cos

2  .
2

r r r rr r

r r
r rr r r r r

r

′ ′= = + q+ =

-
= + + = +

Звідси, з огляду на формули (10), випливає

	
2

21 21
1 2

2 2

.
r r rr

x x x
r r

+′
′ ′= = = = +μ 	 (18)

Повертаючись до співвідношення (17) також 
знаходимо

	 2 1 1
cos .

2 2

r r

r x

- -μ
q = = 	 (19)

Підставимо знайдені вирази (18) та (19) 
в рівняння (11), яке виражає умову рівності 
нулю радіальної складової сили, що діє на третє 
тіло збоку першого та другого. Маємо

( ) ( ) ( )3 3 2
2 2

11
22 0. 

1

xx xxx

x x

-μ -μ μ -+μ  
 - - + =

+μ+μ +μ

Звідси знаходимо рівняння для розрахунку 
положень L4 та L5:

	
3

3 2 2(1 ) ( ) 0.x x
 
- +μ + +μ = 
 

	 (20)
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Рівняння (20) має два дійсні розв’язки. Один 
з них x = 0. Цей випадок слід відкинути, адже 
згідно формули (19) при x = 0  косинус пере-
творюється на безмежність. Інший корінь задо-
вольняє рівняння:

3
3 2 2(1 ) ( ) .x+μ = +μ

Остаточно, положення точок Лагранжа L4 та 
L5 описується виразом:

	 2
4,5 1 .x = +μ +μ 	 (21)

Відзначимо, що результат (21) був одержа-
ний без використання будь-яких наближених 
методів, тобто він справедливий для довільного 
співвідношення мас першого та другого ком-
понента системи. Підставивши (21) у співвід-
ношення (19) ми приходимо до формули, яка 
визначає кутове розташування точок Лагранжа 
L4 та L5, відносно лінії, яка з’єднує перше та 
друге (див. рис. 1):

	 ( )
2

11
cos .

2 1

-μ
q =

+μ +μ
 	 (22)

ревіримо одержаний результат у граничних 
випадках. Нехай μ → 0 (наприклад система 
Сонце-Земля), тоді формула (22) дає відоме 
значення для кута, який визначає напрямок на 
точки L4 та L5:

1
cos , .

2 3

p
q = →q = ±

Для випадку, коли маси головних компонент 
є однаковими, значення параметра μ = 1, тоді 
формула (22) дає наступний результат:

cos 0, .
2

p
q = →q = ±

Таким чином, кутове положення точок 
Лагранжа L4 та L5 в залежності від співвідно-
шення мас двох головних компонент буде змі-
нюватися в межах від π/3 до π/2. Цей резуль-
тат має важливе значення, адже традиційно 

вважається, що точки Лагранжа L4 та L5 розта-
шовані під кутами ±π/3.

Одержаний у роботі кутовий розподіл точок 
Лагранжа (22) характеризується загальністю 
і дозволяє розрахувати відповідні положення 
для систем з довільним співвідношенням мас. 
Це співвідношення може бути використане 
під час планування різноманітних космічних 
місій, у яких будуть використовуватися точки 
Лагранжа L4 та L5.

Співвідношення (15), (16) та (21) нами були 
застосовані для розрахунку координат точок 
Лагранжа в зоряних системах Groombridge 34, 
HD 155358 та HD 69830. Відповідні результати 
наведені в табл. 1 та табл. 2.

Як можна бачити з результатів наведених 
у табл. 1 та табл. 2, коли маса одного з компо-
нентів набагато переважає масу іншого (μ → 0), 
то кутове розміщення точок L4 та L5 близьке 
до π/3. Якщо ж маси двох компонент співмірні 
(для системи Groombridge 34 μ = 0,383), то кут 
q стає більшим від π/3.

У даній роботі кутовий розподіл (22) був 
також застосований для аналізу екзопланетної 
зоряної системи PDS 70. Особливістю цієї екзо-
системи є те, що у ній зафіксовано небесне тіло 
на одній орбіті з екзопланетою PDS70b (рис. 2) 
[10, 11].

На основі відомих параметрів PDS 70 [10, 
11] нами був проведений розрахунок точок 
Лагранжа для цієї екзопланетної зоряної сис-
теми. Відповідні значення наведені у табл. 3.

Таблиця 1
Розташування точок Лагранжа 

в системі Groombridge 34
q, ° 75,5°

r1, а.о. 46,19
r2, а.о. 139,8
r3, а.о. 143,4
r4,5, а.о. 115,0

Таблиця 2
Параметри екзосистем HD 155358 та HD 69830 та їх точки Лагранжа

Назва системи Кут q r1, а.о. r2, а.о. r3, а.о. r4,5, а.о. Співвідношення 
мас μ

Відстань між 
компонентами, а.о.

HD155358–HD155358b 60,04° 0,60 0,68 0,64 1,02 9,42 ⋅ 10-4 1,02

HD155358–HD155358с 60,04° 0,95 1,09 1,02 0,64 9,77 ⋅ 10-4 0,64

HD 69830–HD 69830b 60,00° 0,08 0,08 0,07 0,08 3,654 ⋅ 10-5 0,08
HD 69830–HD 69830c 60,00° 0,18 0,19 0,18 0,18 4,37 ⋅ 10-5 0,18
HD 69830–HD 69830d 60,04° 0,61 0,64 0,62 0,62 4,43 ⋅ 10-5 0,62
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Кутовий розподіл (22) застосований для 
системи PDS 70 – PDS 70b дає значення кута 
на точки Лагранжа L4 та L5 θ = 60,5°. Про-
ведений у роботі аналіз зображення системи 
PDS 70 (див. рис. 2) показав, що газопилова 
хмарина, що розташовується на орбіті екзо-
планети PDS70b знаходиться на кутовій від-
стані, яка відповідає точці Лагранжа L5. Цей 
результат підтверджує гіпотезу про те, що на 
орбіті екзопланети PDS 70b формується ще 
одна «троянська» екзопланета. Це дозволяє 
нам стверджувати, що коорбітальні конфігу-
рації, відомі у Сонячній системі (наприклад, 

Рис. 2. Зображення екзопланетної зоряної 
системи PDS 70 створене за допомогою 

телескопу ALMA
Джерело: https://www.eso.org/public/images/eso2311b/

Таблиця 3
Параметри екзопланетної зоряної системи PDS 70 та її точки Лагранжа

Відстань між 
компонентами, а.о.

Співвідношення 
мас m

Відстань до точок Лагранжа від центру мас системи 
PDS 70 – PDS 70b

r1, а.о. r2, а.о. r3, а.о. r4,5, а.о.
20,8 0,010 17,68 23,92 21,10 20,90

троянські астероїди Юпітера), є універсаль-
ним явищем, здатним виникати і в екзопланет-
них системах.

Висновки. У роботі було проведене теоре-
тичне дослідження кутового розподілу точок 
Лагранжа. Використаний у роботі формалізм 
полярних координат дозволив не лише спро-
стити виведення положень точок Лагранжа, 
а й отримати аналітичний вираз, що визначає 
кутове розташування точок Лагранжа L4 та 
L5, відносно лінії, яка з’єднує перше та друге 
тіло. На основі одержаного кутового розподілу 
було встановлено, що в залежності від співвід-
ношення мас двох головних компонент точок 
Лагранжа L4 та L5 може змінюватися в межах від 
π/3 до π/2. Даний результат був підтверджено на 
прикладах зоряних систем Groombridge 34, HD 
155358 та HD 69830, для яких виконується різні 
співвідношення мас в діапазонах від 0,443 ⋅ 10-5 
до 0,383. Також у роботі був проведений роз-
рахунок кутового розташування газопилової 
хмарини, що розташовується на орбіті екзо-
планети PDS70b в екзопланетній зоряній сис-
темі PDS70 та аналіз зображень цієх системи. 
У результаті було показано, що хмара пилу, 
в якій формується нова планета, розташована 
у точці Лагранжа L5 системи PDS 70 – PDS 70b. 
Цей результат підкріплює гіпотезу про те, що 
на орбіті екзопланети PDS 70b формується ще 
одна «троянська» екзопланета.
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