SPECIALIZED TEXT AS AN OBJECT OF MACHINE TRANSLATION (COMPARATIVE ANALYSIS)

Authors

  • Nataliia Dobzhanska-Knight
  • Svitlana Luts

Keywords:

specialized text, machine translation, evaluation of machine translation, domain translation, parameters of evaluation

Abstract

The article deals with the problem of translation of specialized texts with the help of machine translation. The article analyses the characteristics and quality of the translation of materials with scientific and technical orientation, as well as legal documents. The basic methods of evaluating machine translation of texts are outlined. With the help of the selected parameters of evaluation and free online translators Pragma, Online.ua, MyMemory and Tetran, two groups of specialized text translations have been analyzed and compared: user manuals and legal documents (EU documents and UN documents). An attempt has been made at evaluating the quality of translation of sentences from both domains which are characterized by different styles, grammar and vocabulary, and compiling a typology of mistakes made by the mentioned online translators. We have also compared the translation quality in each domain, as well as the work of each of the analyzed online-translators (those that offer the technical and legal domain choice, or those that have translation memory). The publication focuses on the typical mistakes made in the process of translation of technical and legal texts, provides supervised examples of mistakes made by machine translators, and compares the machine translation work with examples of model translation done by a professional human translator of the text, in order to check the adequacy of the machine translation. On the basis of the study of the specifics of specialized texts and methods of evaluation of translation, we conclude that, despite the complexity of the terminology, the online translators made fewer mistakes in translations of legal texts than in translation of technical texts. The analysis of the work of machine translators also shows that the translators which use translation memory make fewer errors than those that allow users to select the branch of translation. The conclusions drawn in the article can be used during theoretical substantiation and practical development of the methodology for the translation of specialized texts with the help of machine translators.

References

Бірюков А. Оцінка якості системи машинного перекладу “Прагма 4.4” з німецько-українською мовною парою / А. Бірюков. – Тернопіль : Studia Methodologica, 2006. – С. 61–64.

Гальперин І. Р. Текст як об‟єкт лінгвістичного дослідження / І. Р. Гальперин. – М. : Наука., 1981. – 139 с.

Ємеліна О. В. Граматичні особливості перекладу юридичних текстів: стаття / О. В. Ємеліна. – М. : [б. и.], 2011. – С. 70–73.

Конвенція про права дитини [Електронний ресурс]. – Режим доступу : http://zakon2.rada.gov.ua/laws/ show/995_021

Мороховскій А. Н. Стилістика англійської мови : підручник / А. Н. Мороховскій, О. П. Воробйова, Н. І. Лихошерст, З. В. Тимошенко. – Київ : Вища шк., 1991. – 272 с.

Переклад юридичних текстів [Електронний ресурс]. – Режим доступу : http://www.norma-tm.ru

Чернікова Л. Ф. Лінгвістична якість машинного перекладу / Л. Ф. Чернікова. – 2013. – С. 165–168.

Щербакова І. В. Особливості перекладу технічних текстів / І. В. Щербакова. – Ростов-на-Дону : [б. в.], 2015. – 7 с.

Яковина В. Огляд та аналіз метрик оцінювання якості перекладу / В. Яковина, В. Масюкевич. – Львів : [б. в.], 2013. – С. 101–107.

Arnold D. Machine Translation. An Introductory Guide / D. Arnold, L. Balkan, S. Meijer, R. L. Humphrey, L. Sadler. – London : NCC Blackwell, 1994. – 234 p.

Braun 130 Series 1 User Manual [Electronic resource]. – Access mode : https://mcgrp.ru/files/viewer/ 39704/4#navigate_bar

Convention on the Rights of the Child [Electronic resource]. – Access mode : http://www.ohchr.org/EN/ ProfessionalInterest/Pages/CRC.aspx

Darwish A. Transmetrics: A Formative Approach to Translator Competence Assessment and Translation Quality Evaluation for the New Millennium / A. Darwish – Australia : RMIT University, 2001. – 16 p.

Jolley J. Free Online Machine Translation: Use and Perceptions by Spanish Students and Instructors / J. Jolley, L. Maimone. – United States : Gorgetown University, Missouri State University, 2013. – P. 181−202.

MyMemory [Electronic resource]. – Access mode : http://mymemory.translated.net/

Online.ua [Electronic resource]. – Access mode : https://pereklad.online.ua/ukr/

Snover M. A Study of Translation Edit Rate with Targeted Human Annotation / M. Snover, B. Dorr, R. Schwartz, L. Micciulla, J. Makhoul // Proceedings of the 7th Conference of the Association for Machine Translation in the Americas. – Cambridge, MA., 2006. – P. 223–231.

Tetran [Electronic resource]. – Access mode : http://www.tetran.ru/OnLineTranslatorEn#goto

Trident Software [Electronic resource]. – Access mode : http://www.translate.ua/uk/pragma-6x/on-line-translator

Zaretskaya A. A Quality Evaluation Template for Machine Translation / A. Zaretskaya, G. C. Pastor, M. Seghiri. – 2016. – 18 p.

Published

2021-06-22

How to Cite

Dobzhanska-Knight Н., & Luts С. (2021). SPECIALIZED TEXT AS AN OBJECT OF MACHINE TRANSLATION (COMPARATIVE ANALYSIS). Current Issues of Foreign Philology, (7), 50–57. Retrieved from http://journals.vnu.volyn.ua/index.php/philology/article/view/2682