ORIGIN OF NANOSTRUCTURES IN SULPHIDE AND SELENIDE GLASSES

Authors

DOI:

https://doi.org/10.32782/pet-2021-2-5

Keywords:

glasses alloy, inhomogeneities, intensity of scattered X-rays

Abstract

Based on radiography data, the X-ray scattering curves of HgX-GeX2 (X-S, Se) X-ray alloys were compared with the diffraction patterns of polycrystalline Hg2GeSe4 (Hg4GeS6) alloys. In the amorphous matrix of the alloy based on compounds Hg2GeSe4 for selenide and Hg4GeS6 for sulfide systems dispersed inhomogeneities. For the selenide system, the size of the inhomogeneities is about 5 nm.

References

Kityk I.V., Halyan V.V., Yukhymchuk V.O. [and others]. NIR and visible luminescence features of erbium doped Ga2S3–La2S3. J Non Cryst Solids. 2018. Vol. 498. P. 380–385.

Halyan V.V., Yukhymchuk V.O., Ivashchenko I.A. [and others]. Synthesis and downconversion photoluminescence of Erbium-doped chalcohalide glasses of AgCl(I)–Ga2S3–La2S3 systems. Applied Optics. 2021. Vol. 60. P. 5285–5290.

Kityk I.V., Halyan V.V., Kevshyn A.H. [and others]. (Ga54.59In44.66Er0.75)2S300 single crystal: novel material for detection of γ-radiation by photoinduced nonlinear optical method. J. Mater. Sci. Mater. Electron. 2017. Vol. 28. P. 14097–14102.

Halyan V.V., Kityk I.V., Kevshyn A.H. [and others]. Effect of temperature on the structure and luminescence properties of Ag0.05Ga0.05Ge0.95S2–Er2S3 glasses. J. Lumin. 2017. Vol. 181. P. 315–320

Halyan V.V., Khyzhun O.Y., Ivashchenko I.A. [and others]. Electronic structure and optical properties of (Ga70La30)2S300 and (Ga69.75La29.75Er0.5)2S300 single crystals, novel light-converting. Physica B Condens. Matter. 2018. Vol. 544. P. 10–16.

Halyan V.V., Yukhymchuk V.O., Gule Ye.G. [and others]. Photoluminescence features and nonlinear-optical properties of the Ag0.05Ga0.05Ge0.95S2–Er2S3 glasses. Opt. Mater. 2019. Vol. 90. P. 84–88.

El Naggar A.M., Albassam A.A., Lakshminarayana G., Halyan V.V. [and others]. Exploration of Nonlinear Optical Features of Ga2S3–La2S3 Glasses for Optoelectronic Applications. Glass Phys. Chem. 2019. Vol. 45. P. 467–471.

Olekseuk I.D., Bozhko V.V., Parasyuk O.V., Galyan (Halyan) V.V., Petrus’ I.I. Physico-chemical and physical properties of glasses of the HgSe – GeSe2 system. Functional Materials. 1999. Vol. 6. № 3. P. 1–4.

Мотря С.Ф. Тройные системы ртуть германий (олово) – сера(селен). В кн. Получение и свойства сложных полупроводников. Киев : УМК ВО. 1991. С. 17–26.

Галян В.В. Вплив модифікаторів (HgSe, Cu2Se) на фізичні властивості склоподібного диселеніду германію. втореф. канд. дис. Луцьк. 2003. 17 с.

Галян В.В., Давидюк Г.Є., Парасюк О.В., Олексеюк І.Д. Дослідження структури склоподібних сплавів HgSGeS 2 дифракцією рентгенівських променів. ІІ УМКФН. Чернівці-Вижниця. 2004. С. 183.

Мотря С.Ф., Ворошилов Ю.В., Поторий М.В., Семрад Е.Е. Фазовые равновесия в системах Ge (Sn)Se2 – HgSe. Укр. хим. журн. 1986. Т. 52. № 8. С. 807–809.

Вайнштейн Б.К. Симметрия кристаллов. Методы структурной кристаллографии. М.: Наука. 1979. 384 с.

Published

2021-11-02

How to Cite

КЕВШИН A., ГAЛЯН В., & ТРЕТЯК, А. (2021). ORIGIN OF NANOSTRUCTURES IN SULPHIDE AND SELENIDE GLASSES. Physics and Educational Technology, (2), 31–35. https://doi.org/10.32782/pet-2021-2-5