INFLUENCE OF HYDROSTATIC PRESSURE ON THE ELECTRONIC STRUCTURE OF THE CuAlTe2 CRYSTAL
DOI:
https://doi.org/10.32782/pet-2024-2-8Keywords:
chalcopyrite, hydrostatic pressure, band structure, density of states, density functional theoryAbstract
In this paper, for the first time, a theoretical study of the structural and physical properties of the CuAlTe2 crystal under the influence of external hydrostatic pressures was carried out. For this, a complex of computer calculations was carried out, which included the calculation of the crystal structure and properties of the material under study. The crystal structure was determined using the Broyden-Fletcher-Goldfarb-Schenno method, which was used to obtain optimized lattice parameters and atomic coordinates. The study of the electronic properties of the crystal and their transformation under the action of hydrostatic pressure was carried out by modeling from the first principles. For this purpose, calculations of the band-energy structure of the crystal E(k) were carried out within the framework of the density functional theory (DFT). The exchange-correlation interaction was described using the generalized gradient approximation. The main attention is paid to the study of changes in crystallographic parameters under pressure, which allows us to understand the peculiarities of the behavior of this material under the influence of high pressure. Hydrostatic pressures in the range of 0–5 GPa were used in the work. The results show that under the influence of hydrostatic pressure there is a gradual decrease in the volume of the unit cell, which is in good agreement with theoretical predictions and is described by the Murnaghan equation of state. On the basis of this equation, the bulk modulus of elasticity B and its first pressure derivative B', which characterize the crystal's resistance to deformations, are determined. It was investigated that the application of pressure causes a significant tetrahedral deformation of the CuAlTe2 crystal lattice, which can affect its physical properties, in particular, the electronic structure. Importantly, an increase in pressure leads to an increase in the band gap Eg, which can be useful for potential applications of the material in semiconductor technology. Calculations showed that the change in the value of Eg with increasing pressure corresponds to a quadratic dependence, which allows us to accurately describe the behavior of the gap width in the range of applied pressures. The obtained results may be useful for the further application of CuAlTe2 in high-tech devices, where materials with the ability to adjust the band gap under the influence of external conditions are needed.
References
Honeyman W.N., Wilkinson K.H., Growth and properties of single crystals of group I-III-VI2 ternary semiconductors, J. Phys. D: Appl. Phys. 1971. 4. P. 1182–1185.
Koschel W.H., Sorger F., Baars J., Optical phonons in I-III-VI2 compounds, J. Phys. Colloques. 1975. 36. P. C3-177-C3-181.
Matsushita H., Endo S.E.S., Irie T.I.T., Raman-scattering properties of I-III-VI2 group chalcopyrite semiconductors, Jpn. J. Appl. Phys. 1992. 31. P. 18.
Benseddik N., Belkacemi B., Boukabrine F., Ameur K., Mazari H., Boumesjed A., Benyahya N., Benamara Z., Numerical study of AgInTe2 solar cells using SCAPS, Advances in Materials and Processing Technologies. 2020. P. 1–9.
Kowsar A., Hosen M.B., Ali M.K., Asaduzzaman M., Bahar A.N., Performance optimization of ZnS/CIGS solar cell with over 25% efficiency enabled by using a CuIn3Se5 OVC layer, International Journal of Renewable Energy Research (IJRER). 2020. 10. P. 2000–2005.
Mondal G., Santra A., Jana S., Pramanik N., Mondal A., Bera P., Enhanced photocatalytic activity of ternary CuInS2 nanocrystals synthesized from the combination of a binary Cu(I)S precursor and InCl3, Journal of Nanoparticle Research. 2018. 20. P. 108.
Regulacio M.D, Han M.-Y., Multinary I-III-VI2 and I2-II-IV-VI4 semiconductor nanostructures for photocatalytic applications, ACS Publications. 2016. 49. P. 511–519.
Huang D., Ding L., Xue Y., Guo J., Zhao Y.-J., Persson C., Interface of Sn-doped AgAlTe 2 and LiInTe 2 : A theoretical model of tandem intermediate band absorber, Appl. Phys. Lett. 2021. 118. P. 043901.
Boyd G., Kasper H., McFee J., Linear and nonlinear optical properties of AgGaS2, CuGaS2, and CuInS2, and theory of the wedge technique for the measurement of nonlinear coefficients, IEEE Journal of Quantum Electronics. 1971. 7. P. 563–573.
Rudysh M.Ya., Electronic structure, optical and elastic properties of AgAlS2 crystal under hydrostatic pressure, Materials Science in Semiconductor Processing. 2022. 148. P. 106814.
Rudysh M.Ya., Shchepanskyi P.A., Fedorchuk A.O., Brik M.G., Stadnyk V.Yo., Myronchuk G.L., Kotomin E.A., Piasecki M., Impact of anionic system modification on the desired properties for CuGa(S1−xSex)2 solid solutions, Computational Materials Science. 2021. 196. P. 110553.
Rudysh M.Ya., Piasecki M., Myronchuk G.L., Shchepanskyi P.A., Stadnyk V.Yo., Onufriv O.R., Brik M.G., AgGaTe2 – The thermoelectric and solar cell material: Structure, electronic, optical, elastic and vibrational features, Infrared Physics & Technology. 2020. 111. P. 103476.
Bovornratanaraks T., Kotmool K., Yoodee K., McMahon M.I., Ruffolo D., High pressure structural studies of AgInTe2, J. Phys.: Conf. Ser. 2010. 215. P. 012008.
Gudelli V.K., Kanchana V., Vaitheeswaran G., CuAlTe2: A promising bulk thermoelectric material, Journal of Alloys and Compounds. 2015. 648. P. 958–965.
Benchouk K., El Moctar C., Bernede J.C., Marsillac S., Pouzet J., Barreau N., Emziane M., Growth and physicochemical characterization of CuAlTe2 films obtained by reaction, induced by annealing, between Cu/Al/Te/Al/Cu... Al/Cu/Al/Te layers sequentially deposited, Journal of Materials Science. 1999. 34. P. 1847–1853.
Benchouk K., Zamallach K., Khelil A., Bernede J.C., Structural properties of ternary buffer films based upon CuAlTe2, IOP Conf. Ser.: Mater. Sci. Eng. 2010. 13. P. 012024.
Hassan N.A., Khudayer I.H., Thickness effect of CuAlTe2 thin films on morphological, structural and visual properties, Ibn AL-Haitham Journal For Pure and Applied Sciences. 2020. 33. P. 27–43.
Sharma M., Singh P., Kumari M., Verma U.P., CuAlTe2 under high temperature: An ab initio approach, AIP Conf. Proc. 2014. 1591. P. 1321–1323.
Korzun B.V., Fadzeyeva A.A., Bente K., Schmitz W., Schorr S., Thermal expansion and structural properties of (CuAlTe2)1–x(CuAlSe2)x solid solutions, Crystal Research and Technology. 2006. 41. P. 168–173.
Gupta R.C., Varshney P., Mechanical stability parameters of chalcogenides and pnictides based optoelectronic materials, Chalcogenide Letters. 2023. 20. P. 101–112.
Reshak A.H., Auluck S., Electronic properties of chalcopyrite CuAlX2(X = S, Se, Te) compounds, Solid State Communications. 2008. 145. P. 571–576.
Ravindran P., Fast L., Korzhavyi P. A., Johansson B., Wills J., Eriksson O., Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2, Journal of Applied Physics. 1998. 84. P. 4891–4904.
Clark S.J., Segall M.D., Pickard C.J., Hasnip P.J., Probert M.I.J., Refson K., Payne M.C., First principles methods using CASTEP, Zeitschrift Für Kristallographie - Crystalline Materials. 2005. 220. P. 567–570.
Perdew J.P., Zunger A., Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B. 1981. 23. P. 5048–5079.
Monkhorst H.J., Pack J.D., Special points for Brillouin-zone integrations, Phys. Rev. B. 1976. 13. P. 5188–5192.
Pfrommer B.G., Côté M., Louie S.G., Cohen M.L., Relaxation of crystals with the quasi-Newton method, Journal of Computational Physics. 1997. 131. P. 233–240.
Hahn H., Frank G., Klingler W., Meyer A.-D., Störger G., Untersuchungen über ternäre Chalkogenide. V. Über einige ternäre Chalkogenide mit Chalkopyritstruktur, Zeitschrift für anorganische und allgemeine Chemie. 1953. 271. P. 153–170.
Rudysh M.Ya., Electronic structure, optical and elastic properties of AgAlS2 crystal under hydrostatic pressure, Materials Science in Semiconductor Processing. 2022. 148. P. 106814.
Rudysh M.Ya., Shchepanskyi P.A., Myronchuk G.L., Piasecki M., Martyniuk O.S., Vibrational, thermodynamic and acoustic properties of AgAlS2 crystal, Physica B: Condensed Matter. 2023. 654. P. 414731.
Brik M.G., Ma C.G., Tailoring the electronic and elastic properties by varying the composition of the CuGa1−xAlxS2 chalcopyrite semiconductor, J. Phys. D: Appl. Phys. 2013. 46. P. 285304.
Reddy R.R., Ahammed Y.N., A study on the Moss relation, Infrared Physics & Technology. 1995. 36. P. 825–830.
Geng J., Wu J., Effects of pressure on structural, mechanical, and electronic properties of chalcopyrite compound CuAlS2, Cchalcogenide Letters. 2023. 20. P. 215–225.