THERMOELECTRIC AND OPTICAL PROPERTIES OF SOLID SOLUTION CRYSTALS ACROSS THE Pb4Ga4GeSe12-Pb4Ga4GeS12 SECTION
DOI:
https://doi.org/10.32782/pet-2025-1-14Keywords:
semiconductors, crystals, Seebeck coefficient, optical absorption, band gapAbstract
The paper presents the results of studies on the thermoelectric and optical properties of Pb4Ga4GeSe12– Pb4Ga4GeS12 crystals. The Pb4Ga4GeSe12–Pb4Ga4GeS12 crystals corresponded to the compositional content of 10, 20, and 30 mol.% Pb4Ga4GeS12.The aim of the study was to experimentally determine the specific electrical conductivity, conductivity type, Seebeck coefficient, estimate the band gap width, and calculate the thermoelectric power of Pb4Ga4GeSe12–Pb4Ga4GeS12 crystals.All studies were conducted at room temperature (T≈300 K). The highest values of specific electrical conductivity (σ≈170 Ω⁻¹·m⁻¹) were observed in Pb4Ga4GeSe12–Pb4Ga4GeS12 crystals with a 20 mol.% Pb4Ga4GeS12 content. High values of σ may indicate that the materials are in a state close to degeneracy. Thermoelectric methods have established that Pb4Ga4GeSe12–Pb4Ga4GeS12 crystals belong to n-type semiconductors. The Seebeck coefficient values were 205 µV/K, 220 µV/K, and 240 µV/K for Pb4Ga4GeSe12–Pb4Ga4GeS12 crystals with 10, 20, and 30 mol.% Pb4Ga4GeS12 content, respectively. Having high Seebeck coefficient values, Pb4Ga4GeSe12–Pb4Ga4GeS12 compounds are promising materials for the fabrication of sensitive thermal sensors. It has been established that the highest values of thermoelectric power (α²·σ=8.2×10⁻⁶ W/m·K²) are characteristic of Pb4Ga4GeSe12–Pb4Ga4GeS12 crystals with a 20 mol.% Pb4Ga4GeS12 content.To estimate the band gap width, light absorption spectra were studied in the region of the fundamental absorption edge.The band gap values estimated from the optical absorption spectra were 1.89 eV, 1.92 eV, and 1.95 eV for Pb4Ga4GeSe12– Pb4Ga4GeS12 solid solutions with 10, 20, and 30 mol.% Pb4Ga4GeS12, respectively. It was established that the investigated crystals are indirect band gap semiconductors.
References
Bellagra H., Nyhmatullina O., Kogut Y., Myronchuk H., Piskach L. Photoconductivity of the Single Crystals Pb4Ga4GeS12 and Pb4Ga4GeSe12. Multidisciplinary Digital Publishing Institute (MPDI ): Proceedings. 2020. Vol. 62, № 1. P. 3–8. https://doi.org/10.3390/proceedings2020062004
Bellagra H.K., Kogut Y.M., Piskach L.V. Component Interaction in the Quasi-Ternary System PbSe–Ga2Se3– GeSe2. J. Phase Equilib. Diffus. 2023. V. 44. P. 3–16. https://doi.org/10.1007/s11669-022-01017-9
Chen, Y.K., Chen, M.C., Zhou, L.J., Chen, L., Wu, L.M. Syntheses, structures, and nonlinear optical properties of quaternary chalcogenides: Pb4Ga4GeQ12 (Q=S, Se). Inorg. Chem. 2013. Vol.52. P. 8334–8341. https://doi.org/10.1021/ic400995z
Rowe D. M. Handbook of thermoelectrics. New. York : CRC Press, 1995. 720 рр.
Freik D.M., Nykyruy L.I., Dzumedzey R.O. et al. Thermoelectric Figure of Merit Optimization of PbX (X=S, Se, Te) Crystals. Physics and chemistry of solid state. 2013. vol. 14. P. 383–389.
Новосад О., Пішова П., Божко В., Шпак В. Термоелектрична добротність монокристалів (AgSb)1-хPbхSe2. Фізика та освітні технології. 2021. №. 1. С. 39–45. https://doi.org/10.32782/pet-2021-1-7
Myronchuk G. L., Nyhmatullina O., Rudysh M. Y. et al. Impact of Structural Defects on the Electronic and Optical Properties of Pb4Ga4Ge(S,Se)12 Crystals. Physica B: Condensed Matter. 2025. Vol. 699. Р. 416834. https://doi.org/10.1016/j.physb.2024.416834
Novosad O., Shygorin P., Bozhko V., Pishova P., Venhryn B., Goldun V. Electrical and Thermoelectrical Properties of PbSe–AgSbSe2 Monocrystals. Proceedings of 16th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering, Lviv-Slavske, Ukraine, February 22–26, 2022, P. 798–801. https://doi.org/10.1109/TCSET55632.2022.9767085
Enrique Macia. Thermoelectric Materials: Advances and Applications. CRC Press, 2015. 364 р.
Новосад О. Теплопровідність та термоелектрична добротність твердих розчинів CuIn5S8-CdIn2S4. Фізика та освітні технології, 2023. № 2. С. 30–35. https://doi.org/10.32782/pet-2023-2-4
Studenyak I., Kranjec M., Kurik M. Urbach Rule in Solid State Physics. International Journal of Optics and Applications. 2014. Vol.4. № 3. P. 76–83. https://doi.org/10.5923/j.optics.20140403.02