ELECTRICAL PROPERTIES OF Pb4Ga4GeSe12–Pb4Ga4GeS12 SOLID SOLUTION CRYSTALS
DOI:
https://doi.org/10.32782/pet-2025-2-15Keywords:
crystals, defects, conductivity type, resistivity, light absorption, band gapAbstract
The paper presents the results of studies on the electrical and optical properties of Pb4Ga4GeS12–Pb4Ga4GeSе12 crystals. The Pb4Ga4GeSe12–Pb4Ga4GeS12 crystals corresponded to the compositional content of 10, 20, 30, 40 and 50 mol.% Pb4Ga4GeSе12. The semiconductor compounds Pb4Ga4GeSе12 and Pb4Ga4GeS12, as well as their solid solutions Pb4Ga4GeS12– Pb4Ga4GeSе12, crystallize in a tetragonal space group Р–421с and are promising materials for research in advanced areas of semiconductor materials science. These compounds combine the properties of several classes of semiconductors: classical semiconductors, thermoelectric materials, and nonlinear optical materials. Single crystals of Pb4Ga4GeS12 exhibit p-type conductivity, which is primarily associated with the presence of defects such as Pb, Ga, or Ge vacancies (VPb, VGa, VGe), or substitutional defects like PbGa and PbGe. In contrast, the solid solutions Pb4Ga4GeS12–Pb4Ga4GeSе12 containing 10–50 mol.% of Pb4Ga4GeSе12 demonstrate n-type conductivity. The main factors responsible for this conductivity type inversion are the decrease in band gap (Eg) and the increase in selenium vacancy (VSe) concentration with rising Pb4Ga4GeSе12 content. The non-monotonic dependence of the electrical resistivity of Pb4Ga4GeS12–Pb4Ga4GeSе12 on the Se concentration results from the dominance of different conduction mechanisms at various compositions. The initial increase in resistivity (from 0 to about 10 mol.% Pb4Ga4GeSе12) occurs because some sulfur atoms are replaced by selenium atoms, increasing the crystal lattice defect density and reducing carrier mobility. At concentrations around 20 mol.% Pb4Ga4GeSе12 and higher, the crystal lattice gradually transforms into a more thermodynamically stable structure similar to Pb4Ga4GeSе12, which leads to a decrease in resistivity. Moreover, the reduction of the band gap (Eg) further lowers the thermal activation energy of donor and acceptor centers, enhancing conductivity.
References
Bellagra H., Nyhmatullina O., Kogut Y., Myronchuk H., Piskach L. Photoconductivity of the Single Crystals Pb4Ga4GeS12 and Pb4Ga4GeSe12. Multidisciplinary Digital Publishing Institute (MPDI): Proceedings. 2020. Vol. 62, № 1. P. 3–8. https://doi.org/10.3390/proceedings2020062004
Bellagra, H. K., Kogut, Y. M., Piskach, L. V. Component Interaction in the Quasi-Ternary System PbSe–Ga2Se3–GeSe2. J. Phase Equilib. Diffus. 2023. Vol. 44. P. 3–16. https://doi.org/10.1007/s11669-022-01017-9
Bozhko V. V., Davydyuk G. Ye., Parasyuk O. V., Novosad O. V., Kozer V. R. Electrical and optical properties of solid solutions Cu1 - xZnxInSe2 (x = 0,05–0,2). Ukrainian Journal of Physics. 2010. Vol. 55, № 3. P. 312–316.
Bozhko V. V., Novosad A. V., Parasyuk O. V., Khyzhun O. Y., Vainorius N., Nekrošius A., Vertelis V., Kažukauskas V. Electrical properties and electronic structure of Cu1 - xZnxInSe2 and Cu1 - xZnxInS2 single crystals. Journal of Physics and Chemistry of Solids. 2015. Vol. 82. P. 42–49. https://doi.org/10.1016/j.jpcs.2015.02.012
Chen Y.-K., Chen M.-Ch., Zhou L.-J., Chen L., Wu L.-M. Syntheses, Structures, and Nonlinear Optical Properties of Quaternary Chalcogenides: Pb4Ga4GeQ12 (Q = S, Se). Inorg. Chem. 2013. Vol. 52(15). P. 8334–8341. https://doi.org/10.1021/ic400995z
Lide D. R. Handbook of Chemistry and Physics. 95th Edition. Boca Raton, FL: CRC Press, 2014. 2640 p.
Myronchuk G. L., Nyhmatullina O., Rudysh M. Y. et al. Impact of Structural Defects on the Electronic and Optical Properties of Pb4Ga4Ge(S, Se)12 Crystals. Physica B: Condensed Matter. 2025. Vol. 699. Р. 416834. https://doi.org/10.1016/j.physb.2024.416834
Новосад О., Шигорін О., Беллаґра Х. К., Піскач Л., Гомілко В. Термоелектричні та оптичні властивості кристалів твердих розчинів по перерізу Pb4Ga4GeSe12–Pb4Ga4GeS12. Фізика та освітні технології. 2025. № 1. С. 108–113.
Novosad O. V., Bozhko V. V., Kityk I. V., Vertelis V., Nekrosius A., Kazukauskas V. Photoelectrical and piezooptical properties of Cu1 - xZnxInS2 solid solutions. Sensor Electronics and Мicrosystem Technologies, 2015. T. 12, № 1. P. 53–62. https://doi.org/10.32782/pet-2025-1-14
Новосад О., Пішова П., Божко В., Шпак В. Термоелектрична добротність монокристалів (AgSb)1 - хPbхSe2. Фізика та освітні технології. 2021. № 1. С. 39–45. https://doi.org/10.32782/pet-2021-1-7
Novosad O., Shygorin P., Bozhko V., Pishova P., Venhryn B., Goldun V. Electrical and Thermoelectrical Properties of PbSe–AgSbSe2 Monocrystals. Proceedings of the 16th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering, Lviv-Slavske, Ukraine, February 22–26. 2022. P. 798–801. https://doi.org/10.1109/TCSET55632.2022.9767085
Шигорін О. П., Новосад О. В., Гомілко В. В. Термоелектричні властивості твердих розчинів Pb4Ga4GeSе12–Pb4Ga4GeS12. VI-і читання Анатолія Вадимовича Свідзинського : матеріали доповідей, м. Луцьк, 28 лютого – 01 березня 2025 р. Луцьк, 2025. С. 71–72.
Shannon R. D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallographica A, 1976, 32, P. 751–767. https://doi.org/10.1107/S0567739476001551







