PROGRAMMED SYNTHESIS OF SPINEL-STRUCTURED MANGANITES EXEMPLIFIED BY Zn0.95Co0.05Mn2O4

Authors

DOI:

https://doi.org/10.32782/pcsd-2025-1-4

Keywords:

zinc spinel, phase formation, crystallite size, thermal treatment

Abstract

The study investigates the processes of phase composition formation and structural changes in spinels with the composition Zn0.95Co0.05Mn2O4, synthesized via solution combustion synthesis. The primary focus was on examining the influence of thermal treatment temperature (400–1000 °C) on the crystalline structure, phase composition, and bonding characteristics within the crystal lattice. A comprehensive analysis was conducted using powder X-ray diffraction (PXRD), infrared (IR) spectroscopy, differential thermal analysis with thermogravimetry (DTA/TG), and diffuse reflectance spectroscopy (DRS). Powder X-ray diffraction revealed that the main spinel phase Zn0.95Co0.05Mn2O4 formed even without additional calcination. Thermal treatment improved the crystalline ordering, evidenced by the narrowing of diffraction peaks and the increase in average crystallite size from 6 to 75 nm with rising calcination temperatures. Lattice parameter evaluations indicated a gradual increase in unit cell volume and c/a ratio, suggesting enhanced tetragonal distortion. IR spectroscopy confirmed the absence of organic residues in the precursor after solution combustion and identified characteristic bands for M—O (M = Zn, Co, Mn) vibrational modes in the spinel structure. Increasing calcination temperatures caused the absorption bands to shift towards higher frequencies, attributed to cation ordering and reduced lattice defects. TG/DTA analysis revealed an unusual mass gain (~23 %) up to 800 °C, associated with the oxidation of Mn²+ to Mn³+/ Mn⁴+ and oxygen incorporation into the structure. The absence of distinct exothermic or endothermic peaks indicated gradual phase changes without abrupt thermal events. Diffuse reflectance spectroscopy combined with Kubelka-Munk analysis allowed the determination of the bandgap (Eg) for samples calcined between 600 and 1000 °C. The obtained results highlight the significant impact of thermal treatment on the structural and phase characteristics of Zn0.95Co0.05Mn2O4 and provide deeper insights into the mechanisms of spinel phase formation during solution combustion and subsequent thermal treatment.

References

Hameed A., Asghar A., Shabbir S., Ahmed I., Tareen A. K., Khan K., Hussain G., Awaji M., Anwar H. A detailed investigation of rare earth lanthanum substitution effects on the structural, morphological, vibrational, optical, dielectric and magnetic properties of Co-Zn spinel ferrites. Frontiers in Chemistry. 2024. Vol. 12. DOI: https://doi.org/10.3389/fchem.2024.1433004

Hao Y., Xiao Y., Liu X., Ma J., Lu Y., Chang Z., Luo D., Li L., Feng Q., Xu L., Huang Y. A novel SnO2 /ZnFe2O4 magnetic photocatalyst with excellent photocatalytic performance in Rhodamine B removal. Catalysts. 2024. Vol. 14. P. 350. DOI: https://doi.org/10.3390/catal14060350

Javed K., Abbas N., Bilal M., Alshihri A., Nawaz H., Hassanien M., Naqvi S. Fabrication of a ZnFe2O4@Co/Ni-MOF nanocomposite and photocatalytic degradation study of azo dyes. RSC Advances. 2024. Vol. 14. P. 30957–30970. DOI: https://doi.org/10.1039/D4RA05283H

Li L., Li J., Hu C., Tan S., Shen A., Wang X. Nano‐ZnFe₂O₄ facilitates lithium metal anode achieving high stability. ChemistrySelect. 2024. Vol. 9. DOI: https://doi.org/10.1002/slct.202403649

Liu M., Quan Y., Feng M., Ren C., Wang Z. Ball-milling preparation of ZnFe₂O₄/AgI nanocomposite with enhancedphotocatalytic activity. RSC Advances. 2024. Vol. 14. P. 31193–31204. DOI: https://doi.org/10.1039/d4ra05539j

Madagalam M., Rosito M., Blangetti N., Etzi M., Padovano E., Bonelli B., Carrara S., Tagliaferro A., Bartoli M. Unveiling the effect of Bi in ZnFe₂O₄ nanoparticles in electrochemical sensors. Applied Surface Science. 2024. DOI: https://doi.org/10.1016/j.apsusc.2024.160870

Paweł P., Szostak E., Pocheć E., Michalik J. M., Piętosa J., Tahraoui T., Łuszczek M., Gondek Ł. Biocompatibility and potential functionality of lanthanum-substituted cobalt ferrite spinels. Journal of Alloys and Compounds. 2023. Vol. 966. P. 171433. DOI: https://doi.org/10.1016/j.jallcom.2023.171433

Turkestani M. Enhancing the photoelectrochemical performance of a superlattice p–n heterojunction CuFe2O4 /ZnFe2O4 electrode for hydrogen production. Condensed Matter. 2024. Vol. 9. P. 31. DOI: https://doi.org/10.3390/condmat9030031

Varma A., Mukasyan A. S., Rogachev A. S., Manukyan K. V. Solution combustion synthesis of nanoscale materials. Chemical Reviews. 2016. Vol. 116. Issue 23. DOI: https://doi.org/10.1021/acs.chemrev.6b00279

Zhang Z., Xie J., Zhang H., Xu Z., Lu H., Hu K. Magnetic 0D/1D ZnFe2O4 /ZnCO3 rod-shaped nanocomposites and its in situ conversion to ZnFe2O4/ZnO with boosting and stable photo-Fenton activity for organic pollutants. Journal of Electronic Materials. 2024. Vol. 53. DOI: 10.1007/s11664-024-11111-y

Published

2025-04-30

How to Cite

NEDILKO С., & IVANOV О. (2025). PROGRAMMED SYNTHESIS OF SPINEL-STRUCTURED MANGANITES EXEMPLIFIED BY Zn0.95Co0.05Mn2O4. Problems of Chemistry and Sustainable Development, (1), 25–30. https://doi.org/10.32782/pcsd-2025-1-4