ADSORBENTS OBTAINED BY NITRIC ACID INTERCALATION AND ALKALINE ACTIVATION OF ANTHRACITE

Authors

DOI:

https://doi.org/10.32782/pcsd-2025-1-9

Keywords:

anthracite, intercalation, alkaline activation, carbon adsorbent, ecotoxicant

Abstract

Purpose. Determination of the adsorption properties of carbon adsorbents (CAs) obtained from anthracite by nitric acid intercalation followed alkaline activation. Methodology. Intercalation with the formation of anthracite nitrate was carried out by blowing anthracite with vaporphase HNO3 (57 %) at 140 °C. Activation with the formation of CAs was performed by heating anthracite impregnated with alkali (KOH) up to 800 °C with an isothermal holding of 1 h, cooling, washing from alkali and drying. The CA porosity characteristics were evaluated using low-temperature (77K) nitrogen adsorption-desorption isotherms (2D-NLDFT-HS method). Adsorption measurements were performed at 25 °C and a constant CA content (1 g/L) in aqueous solutions. Adsorption kinetics data were calculated using pseudo-first and pseudo-second order models and intraparticle diffusion. Adsorption isotherms were approximated by Langmuir and Freundlich models. Originality. For the first time, the adsorption of 4-chlorophenol (CPh), methylene blue dye (MB) and lead cations from aqueous solutions (25 °C) by new adsorbents was investigated. Adsorption equilibrium was found to be reached in 2–4 h depending on the adsorbate. The adsorption kinetics obeys a pseudo-second-order equation. The initial rates increase in the adsorbate series MB < Pb(II) < CPh and differ in magnitude by 49 times. The adsorption rate is limited by the interaction of adsorbates with surface adsorption centers. The adsorption isotherms are better approximated by the Langmuir model than by the Freundlich one. The saturated layer capacities of adsorbates, calculated from the Langmuir model, are the largest in the anthracite nitrate adsorbent, increase in the order Pb(II) < MB < HF and are 1.80 mmol/g, 2.34 mmol/g and 4.90 mmol/g, respectively. The degree of adsorbate extraction increases with decreasing concentration in water and reaches 99.7 % for CPh and 90 % for MB and Pb(II) cations. The efficiency of compound extraction by adsorbents in the first minute is ≤ 4.6 % for MB, ≤ 20.9 % for ≤ 4.6 % for Pb(II) and ≤ 50.7 % for CPh. The obtained characteristics of the adsorption activity of anthracite adsorbents justify their high efficiency in purifying water from ecotoxicants.

References

Wei F., Zhang H., He X., Ma H., Dong S., Xie X. Synthesis of porous carbons from coal tar pitch for high-performance supercapacitors. New carbon materials. 2019. V. 34(2). P. 132–139. https://doi.org/10.1016/S1872-5805(19)60006-5

Javed H., Luong D. X., Lee C.-G., Zhang D., Tour J. M., Alvarez P. J. J. Efficient removal of bisphenol-A by ultrahigh surface area porous activated carbon derived from asphalt. Carbon. 2018. Vol. 140. P. 441–448. https://doi.org/10.1016/j.carbon.2018.08.038

Hamyali H., Nosratinia F., Rashidi A., Ardjmand M. Anthracite coal-derived activated carbon as an effectiveness adsorbent for superior gas adsorption and CO2 / N2 and CO2 / CH4 selectivity: Experimental and DFT study. J. Environ. Chem. Eng. 2022. Vol. 10. Is.1. Article 107007. https://doi.org/10.1016/j.jece.2021.107007

Tiwari D., Bhunia H., Bajpai P. K. Adsorption of CO2 on KOH activated, N-enriched carbon derived from urea formaldehyde resin: kinetics, isotherm and thermodynamic studies. Appl. Surf. Sci., 2018. Vol. 439. P. 760–771. https://doi.org/10.1016/j.apsusc.2017.12.203

Gayathiri M., Pulingam T., Lee K. T., Sudesh K. Activated carbon from biomass waste precursors: Factors affecting production and adsorption mechanism. Chemosphere, 2022. Vol.294, Article 133764. https://doi.org/10.1016/j.chemosphere.2022.133764

Seow Y. X., Tan Y. H., Mubarak N. M., Kansedo J., Khalid M., Ibrahim M. L., Ghasemi M. A review on biochar production from different biomass wastes by recent carbonization technologies and its sustainable applications. J. Environ. Chem. Eng. 2022. Vol. 10. Is.1. Article 107017. https://doi.org/10.1016/j.jece.2021.107017

Shi M., Xin Y., Chen X., Zou K., Jing W., Sun J., Chen Y., LiuY. Coal-derived porous activated carbon with ultrahigh specific surface area and excellent electrochemical performance for supercapacitors. J. Alloys and Compounds. 2021. Vol. 859. Article 157856. https://doi.org/10.1016/j.jallcom.2020.157856

Liu Y., Qu X., Huang G., Xing B., Fan Y., Zhang C., Cao Y. Microporous carbon derived from anthracite as supercapacitor electrodes with commercial level mass loading. J. Energy Storage. 2021. Vol. 43. Article 103200. https://doi.org/10.1016/j.est.2021.103200

Ma W., Xiao R., Wang X., Lv X., ZhangW., Wang W., Li Y., Li M., Hou L., Gong Y., ZhangY., Chen C.-M. Chemical co-activated modified small mesoporous carbon derived from nature anthracite toward enhanced supercapacitive behaviors. J. Electroanalytical Chem. 2022. Vol. 917. Article 116417. https://doi.org/10.1016/j.jelechem.2022.116417

Lyubchik S. B., Galushko L. Ya., Rego A. M., Tamarkina Yu. V., Galushko O. L., Fonseca I. M. Intercalation as an approach to the activated carbon preparation from Ukrainian anthracites. J. Phys. Chem. Solids. 2004. Vol. 65. No. 2–3. P. 127–132. https://doi.org/10.1016/j.jpcs.2003.10.006

Гаврилюк Н. А., Шевчук О. М., Приходько Г. П., Картель М. Т. Оксид графену: одержання. властивості. застосування (огляд). Хімія, фізика та технологія поверхні. 2015. Т. 6. № 4. C. 413–448. https://doi.org/10.15407/hftp06.04.413

Lee S.-Yi., Mahajan R.L. A facile method for coal to graphene oxide and its application to a biosensor. Carbon<. 2021. Vol. 181. P. 408–420. https://doi.org/10.1016/j.carbon.2021.05.007

Сапунов В. А., Рудаков Е. С., Гагаринова С. И., Кучеренко В. А. Окисление угля парами азотной кислоты. Укр. хим. ж. 1986. Т. 52. № 8. С. 832–835.

Кучеренко В. О., Тамаркіна Ю. В., Попов А. Ф. Лужна активація з тепловим ударом – новий спосіб отримання нанопоруватих вуглецевих адсорбентів. Доп. НАН України. 2016. № 12, С. 74–81. https://doi.org/10.15407/dopovidi2016.12.074

Jagiello J. Olivier J. P. 2D-NLDFT adsorption models for carbon slit-shaped pores with surface energetical heterogeneity and geometrical corrugation. Carbon. 2013. Vol. 55. P. 70–80. https://doi.org/10.1016/j.carbon.2012.12.011

Thommes M., Kaneko K., Neimark A. V., Olivier J. P., Rodriguez-Reinoso F., Rouquerol. J., Sing K. S. W. Physisorption of gases. with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015. Vol. 87. Is. 9–10. P. 1051–1069. https://doi.org/10.1515/pac-2014-1117

Garba Z. N., Zhou W., Lawan I., Xiao W., Zhang M., Wang L., Chen L., Yuan Z. An overview of chlorophenols as contaminants and their removal from wastewater by adsorption: A review. J. Environ. Manage. 2019. Vol. 241.P. 59–75. https://doi.org/10.1016/j.jenvman.2019.04.004

Ghorbani M., Seyedin O., Aghamohammadhassan M. Adsorptive removal of lead (II) ion from water and wastewater media using carbon-based nanomaterials as unique sorbents: A review. J. Environ. Manage. 2020. Vol. 254. Article 109814. https://doi.org/10.1016/j.jenvman.2019.109814

Oladoye P. O., Ajiboye T. O., Omotola E. O., Oyewola O. J. Methylene blue dye: Toxicity and potential elimination technology from wastewater. Results in Engineering. 2022. Vol. 16. Article 100678. https://doi.org/10.1016/j.rineng.2022.100678

Revellame E. D., Fortela D. L., Sharp W., Zappi M. E. Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: A review. Cleaner Eng. Technol. 2020. Vol. 1. Article 100032. https://doi.org/10.1016/j.clet.2020.100032

Wang J., Guo X. Rethinking of the intraparticle diffusion adsorption kinetics model: Interpretation. solving methods and applications. Chemosphere. 2022. Vol. 309. Article 136732. https://doi.org/10.1016/j.chemosphere.2022.136732

Al-Ghouti M. A., Da’ana D. A. Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazardous Materials. 2020. Vol. 393. Article 122383. https://doi.org/10.1016/j.jhazmat.2020.122383

Chalil Oglou R, Gokce Y., Yagmur R., Aktas Z. Production of demineralised high quality hierarchical activated carbon from lignite and determination of adsorption performance using methylene blue and p-nitrophenol: The role of surface functionality, accessible pore size and surface area. J. Environ. Manage. 2023. Vol.345. Article 118812. https://doi.org/10.1016/j.jenvman.2023.118812

Chen C., Geng X., Huang W.А. Adsorption of 4-chlorophenol and aniline by nanosized activated carbons. Chem. Eng. J. 2017. Vol. 327. P. 941–952. https://doi.org/10.1016/j.cej.2017.06.183

Jasri K., Abdulhameed A. S., Jawad A. H., Al Othman Z. A., Yousef T. A., Al Duaij O. K. Mesoporous activated carbon produced from mixed wastes of oil palm frond and palm kernel shell using microwave radiation-assisted K2CO3 activation for methylene blue dye removal: Optimization by response surface methodology. Diamond and Related Materials. 2023. Vol. 131. Article 109581. https://doi.org/10.1016/j.diamond.2022.109581

Wang Q., Mu J. Baking-inspired pore regulation strategy towards a hierarchically porous carbon for ultra-high efficiency cationic/anionic dyes adsorption. Bioresource Technology. 2024. Vol.395. 2024. Article 130324. https://doi.org/10.1016/j.biortech.2024.130324

Liu G., Qiu L., Deng H., WangJ., Yao L., Deng L. Ultrahigh surface area carbon nanosheets derived from lotus leaf with super capacities for capacitive deionization and dye adsorption. Appl. Surf. Sci. 2020. Vol. 524. Article 146485. https://doi.org/10.1016/j.apsusc.2020.146485

Wu F.-C., Wu P.-H., Tseng R.-L., Juang R.-S. Preparation of novel activated carbons from H2SO4-рretreated corncob hulls with KOH activation for quick adsorption of dye and 4-chlorophenol. J. Environ. Manage. 2011. Vol. 92. Is. 3. P. 708-713. https://doi.org/10.1016/j.jenvman.2010.10.003

Published

2025-04-30

How to Cite

KUCHERENKO В., TAMARKINA Ю., REDKO А., & FROLOVA І. (2025). ADSORBENTS OBTAINED BY NITRIC ACID INTERCALATION AND ALKALINE ACTIVATION OF ANTHRACITE. Problems of Chemistry and Sustainable Development, (1), 64–76. https://doi.org/10.32782/pcsd-2025-1-9