ТЕТРАРНІ ХАЛЬКОГЕНІДИ СИСТЕМ Tl2X–BIIX–DIVX2 (BII – Cd, Hg, DIV– Si, Ge; X – Se, Te)

Автор(и)

DOI:

https://doi.org/10.32782/pcsd-2021-2-5

Ключові слова:

талієвмісні тетрарні халькогеніди, фазові рівноваги, кристалічна структура, рентґено- фазовий аналіз

Анотація

За результатами ренгенофазового аналізу побудовано ізотермічні перерізи систем Tl2Se–CdSe–Ge(Sn)Se2 при 570 К. У системі Tl2Se–CdSe–GeSe2 за температури відпалу у стані термодинамічної рівноваги встановлено утво- рення двох тетрарних сполук. Tl2СdGeSе4 утворюється на перерізі Tl2GeSe3–CdSe при співвідношенні вихідних компонентів 1:1:1, а Tl2CdGe3Se8 – на перерізі Tl2CdGeSe4–GeSe2 при співвідношенні компонентів 1:1:3. Ця квазі- потрійна система має дев’ять однофазних, сімнадцять двофазних і дев’ять трифазних полів. Розчинність на основі CdSe по перерізах Tl4GeSe4–CdSe та Tl2GeSe3–CdSe знаходиться в межах 3 мол.%. В системі Tl2Se–CdSe–SnSe2 при 570 K підтверджено існування сполуки Tl2CdSnSe4 та зафіксовано наявність шести однофазних, десяти двофазних і п’яти трифазних полів. Розшифровано кристалічну структуру чотирьох тетрарних сполук: Tl2CdGe3Se8 та трьох ізоструктурних халькогенідів: Tl2CdGeSe4, Tl2CdSiTe4, Tl2HgSiTe4. Tl2CdGe3Se8 кристалізується в тригональній ПГ P212121 з пара- метрами: а = 0.7.6023(9), b = 1.2071(2), c = 1.7474(2) нм. Tl2ВIIDIVX4 кристалізуються в тетрагональній струк- турі з ПГ I-42m. Параметри комірок сполук: a = 0.80145(9), c = 0.67234(9) нм (Tl2CdGeSe4); a = 0.8049(6), c = 0.68573(8) нм (Tl2CdSnSe4); a = 0.84121(6), c = 0.70289(9) нм (Tl2CdSiTe4); a = 0.83929(4), c = 0.70396(5) нм (Tl2HgSiTe4). Розглянуто залежність об'єму просторової гратки та розрахованої густини від молярної маси у одинадцяти відомих раніше та трьох нововиявлених ізоструктурних (ПГ I-42m) сполуках Tl2BIIDIVX4. Розгля- нуто залежність об'єму просторової гратки та розрахованої густини від молярної маси у одинадцяти відомих раніше та трьох нововиявлених ізоструктурних (ПГ I-42m) сполуках Tl2BIIDIVX4.

Посилання

Piskach L.V., Parasyuk O.V., Olekseyuk I.D. The phase equilibria in the quasi-ternary Cu2S–CdS–SnS2 system. J. Alloys Compds. 1998. 279(2). P. 142-152.

Kanno R., Hata T., Kawamoto Y., Irie M. Synthesis of a new lithium ionic conductor, thio-LISICON–lithium germanium sulfide system. Solid State Ionics, 2000. 130(1-2). P. 97-104.

Parasyuk O.V., Gulay L.D., Piskach L.V., Olekseyuk I.D. The Ag2Se–CdSe–SnSe2 system at 670 K and the crystal structure of the Ag2CdSnSe4 compound. J. Alloys Compds. 2002. 335(1-2). P. 176-180.

Parasyuk O.V., Gulay L.D., Piskach L.V., Kumanska Yu.O. The Ag2Se–HgSe–SnSe2 system and the crystal structure of the Ag2HgSnSe4 compound. J. Alloys Compds. 2002. 339(1-2). P. 140-143.

Parasyuk O.V., Gulay L.D., Romanyuk Y.E., Olekseyuk I.D, Piskach L.V. The Ag2Se–HgSe–GeSe2 system and crystal structures of the compounds. J. Alloys Compds. 2003. 351(1-2). P. 135-144.

Parasyuk O.V., Chykhrij S.I., Bozhko V.V. Piskach L.V., Bogdanyuk M.S., Olekseyuk I.D., Bulatetska L.V., Pekhnyo V.I. Phase diagram of the Ag2S–HgS–SnS2 system and single crystal preparation, crystal structure and properties of Ag2HgSnS4. J. Alloys Compds. 2005. 399(1-2). P. 32-37.

Olekseyuk I.D., Piskach L.V., Zhbankov O.Y., Parasyuk O.V., Kogut Yu.M. Phase diagrams of the quasi-binary systems Cu2S–SiS2 and Cu2SiS3–PbS and the crystal structure of the new quaternary compound Cu2PbSiS4. J. Alloys Compds. 2005. 399(1-2). P. 149-154.

Parasyuk O.V., Fedorchuk A.O., Kogut Y.M. et al., The Ag2S–ZnS–GeS2 system: Phase diagram, glass-formation region and crystal structure of Ag2ZnGeS4. J. Alloys Compds. 2010. 500(1). P. 26-29.

Kogut Y., Fedorchuk A., Zhbankov O., Romanyuk Ya., Kityk I., Piskach L., Parasyuk O. Isothermal section of the Ag2S–PbS–GeS2 system at 300 K and the crystal structure of Ag2PbGeS4. J. Alloys Compds. 2011. 509(11). P. 4264-4267.

Schumer B. N., Downs R. T., Domanik Kenneth J., Andrade M., Origlieri M. J. Pirquitasite, Ag2ZnSnS4. Acta Cryst. 2013. 69(2). P. i8-i9.

Zhang J.-H., Clark D. J., Weiland A., Stoyko S. S., Soo Kim Y., Jang J. I., Aitken J. A. Li2CdGeSe4 and Li2CdSnSe4: biaxial nonlinear optical materials with strong infrared second-order responses and laser-induced damage thresholds influenced by photoluminescence. Inorg. Chem. Front. 2017. 4. Р. 1472-1484.

He J., Guo Y., Huang W., Zhang X., Yao J., Zhai T., Huang F. Synthesis, Crystal Structure, and Optical Properties of Noncentrosymmetric Na2ZnSnS4. Inorg. Chem. 2018, 57(16) , Р. 9918-9924.

Brik M.G., Parasyuk O.V., Myronchuk G.L., Kityk I.V. Specific features of band structure and optical anisotropy of Cu2CdGeSe4 quaternary compounds. Mat. Chem. Phys. 2014. 147. Р. 155-161.

Rincón C., Quintero M.E., Moreno P.Ch., Quintero E., Henao J.A., Macías M.A. Raman spectrum of Cu2CdSnSe4 stannite structure semiconductor compound. Superlattices and Microstruct. 2015. 88. P. 99-103.

Kogut Y., Khyzhun O.Y., Parasyuk O.V., Reshak A.H., Lakshminarayana G., Kityk I.V, Piasecki M. Electronic spectral parameters and IR nonlinear optical features of novel Ag0.5Pb1.75GeS4 crystal. J. Crystal Growth. 2012. 354(1). P. 142-146.

Reshak A.H., Kogut Y.M., Fedorchuk A.O., Zamuruyeva O.V., Myronchuk G.L., Parasyuk O.V., Kamarudin H., Auluck S., Plucinski K.J., Bila J. Electronic and optical features of the mixed crystals Ag0.5Pb1.75Ge(S1–xSex)4. J. Mat. Chem. C. 2013. 1(31). P. 4667-4675.

Litvinchuk A.P., Dzhagan V.M., Yukhymchuk V.O., Valakh M.Ya., Babichuk I.S., Parasyuk O.V., Piskach L.V., Gordan O.D., Zahn D.R. T. Electronic structure, optical properties, and lattice dynamics of orthorhombic Cu2CdGeS4 and Cu2CdSiS4 semiconductors. Phys. Rev B. 2014. 90(16). P. 165-201.

Zhang Y., Sun X., Zhang P., Yuan X., Huang F., Zhang W. Structural properties and quasiparticle band structures of Cu-based quaternary semiconductors for photovoltaic applications. J. Appl. Phys. 2012. 111(6). P. 63709.

Huang Y., Wu K., Cheng J., Zhihua Y., Pan Sh. Li2ZnGeS4: a promising diamond-like infrared nonlinear optical material with high laser damage threshold and outstanding second-harmonic generation response. Dalton Trans. 2019. 48(14). P. 4484-4488.

Eulenberger G. Darstellung und Kristallstruktur des Dithallium(I) blei(II)- tetrathiogermanats(IV) Tl2PbGeS4 / Preparation and Crystal Structure of Dithallium(I) Lead(II) Tetrathiogermanate(IV). Z. Naturforsch. 1980. 35. P. 335-339.

McGuire M.A., Scheidemantel Th.J., Badding J.V., Badding John V., DiSalvo F. J. Tl2AXTe4 (A = Cd, Hg, Mn; X = Ge, Sn): Crystal Structure, Electronic Structure, and Thermoelectric Properties. Chem. Mater. 2005. 17. P. 6186-6191.

Mozolyuk M.Yu., Piskach L.V., Fedorchuk A.O., Olekseyuk I.D., Parasyuk O.V. Physico-chemical interaction in the Tl2Se–HgSe–DIVSe2 systems (DIV – Si, Sn). Mater. Res. Bull. 2012. 47. P. 3830-3834.

Mozolyuk M.Yu., Piskach L.V., Fedorchuk A.O., Olekseyuk I.D., Parasyuk O.V. The Tl2Se–HgSe–GeSe2 system and the crystal structure of Tl2HgGeSe4. Chem. Met. Alloys. 2013. 6. Р. 55-62.

Piskach L.V., Mozolyuk M.Yu., Fedorchuk A.O., Olekseyuk I.D., Parasyuk O.V. Phase equilibria in the Tl2S–HgS–SnS2 system at 520 K and crystal structure of Tl2HgSnS4. Chem. Met. Alloys. 2017. 10. P. 136-141.

Selezen A.O., Piskach L.V., Parasyuk O.V., Olekseyuk I.D. The Tl2SnSe3-CdSe System and the Crystal Structure of the Tl2CdSnSe4 сompound. J. Phase Equilib. Diffus. 2019. 40, 6. P. 797-801.

Mozolyuk M.Yu., Piskach L.V., Fedorchuk A.O., Parasyuk O.V., Khyzhun O.Y. The Tl2S–PbS–SiS2 system and the crystal and electronic structure of quaternary chalcogenide Tl2PbSiS4. 2017. Mat. Chem. Phys. 195. P. 132-142.

Цісар О., Піскач Л., Бабіжецький В., Левицький В., Котур Б., Марушко Л., Олексеюк І., Парасюк О. Фазові рівноваги в системі Tl2Se–In2Se3–GeSe2 при 520 К. Вісн. Львів. у-ту. Сер. хімічна. 2018. 59(10). C. 46-52.

Davydyuk G.E., Piasecki M., Parasyuk O.V., Myronchuk G.L., Fedorchuk A. O., Danylchuk S.P., Piskach L.V., Mozolyuk M.Yu., AlZayed N. 2013. Opt. Mater. 35(12). Р. 2514-2518.

Khyzhun O.Y., Fedorchuk A.O., Kityk I.V., Piasecki M., Mozolyuk M.Yu., Piskach L.V., Parasyuk O.V., ElNaggar A.M., Albassam A.A., Karasinski P. Electronic structure and laser induced piezoelectricity of a new quaternary compound TlInGe3S8. Mat. Chem. Phys. 2018. 204. Р. 336-344.

Myronchuk G.L., Zamurueva O.V., Parasyuk O.V., Piskach L.V., Fedorchuk A.O., AlZayed N.S., El-Naggar A.M., Ebothe J., Lis M., Kityk I.V. Structural and optical properties of novel optoelectronic Tl1−xIn1−xSixSe2 single crystals. J. Mat. Sci.: Mat. in Electr. 25(7). Р. 3226-3232.

Myronchuk G.L., Davydyuk G.E., Parasyuk O.V., Khyzhun O.Y., Andrievski R.A., Fedorchuk A.O., Danylchuk S.P., Piskach L.V., Mozolyuk M.Y. Tl1−xIn1−xSnxSe2 (x = 0, 0.1, 0.2, 0.25) single-crystalline alloys as promising non-linear optical materials. J. Mat. Sci.: Mat. in Electr. 2013. 24(9). Р. 3555-3563.

Абрикосов Н.Х., Банкина В.Ф., Порецкая Л.В. [и др.]. Полупроводниковые халькогениды и сплавы на их основе. Москва : Наука, 1975. С. 219.

Абрикосов Н.Х., Шелимова Н.Х. Полупроводниковые материалы на основе соединений AIVBVI / Москва : Наука, 1975. С. 195.

Glukh A.S., Sabov M.Yu., Barchii I.E., Tsigika V.V., Sidei V.I. Formation of ternary compounds in the Tl2Se-GeSe2 system. Inorgan. Mater. 2009. 45. Р. 1172-1176.

Houenou P., Eholie R., Etude du systeme SnSe2–Tl2Se. Acad. Sci. Paris. 1976. 283. 16. Р. 731–733.

Лазарев В.Б., Переш Е.Ю., Староста В.И., Мудрый В.В. Фазовые равновесия и свойства соединений в системах Tl2S(Se)–SnS2(Se2). Журн. неорг. химии. 1985. 30(6). С. 1502-1506.

Mucha I., Wiglusz K., Sztuba Z., Gaweł W. Solid–liquid equilibria in the quasi-binary thallium(I) selenide–tin(IV) selenide system. Comp. Coupl. Phase Diagr. and T И.Н. hermochem. 2009. 33. Р. 545–549.

Один В.В., Гринко В.В., Новоселова А.В. P-T-X фазовая диаграмма системы CdSe–GeSe. Журнал неорганической химии. 1986. 31(5). С. 1274–1277.

Cтасова М.М., Вайнштейн Б.К. Электронографическое определение структуры Tl2Sе. Кристаллография. 1958. 3(2). С. 141-147.

Dittmar G., Schafer H. Die Kristallstruktur von germanium diselenid. Acta Cryst. B. 1976. 32. Р. 2726-2728.

Busch G., Frohlich C., Hulliger F., Steimeier E. Structur, elektrische und thermoelektrische Eigenschaften von SnSe2. Helv. Phys. Acta. 1961. 34. Р. 359-368.

Glukh O.S., Sabov M.Yu., Barchij I.E., Pavlyuk V.V., Marciniak B. Crystal structure of the Tl4GeSe4 ternary compound. Chem. Met. Alloys. 2009 (2). Р. 10-14.

Eulenberger G. Ternäre Thalliumchalkogenide mit Tl4Ge2S6-Struktur. Monatsh. Chem. 1982. 113. Р. 859-867.

Eulenberger G. Tl4Ge4Se10, ein Thallium(1)selenogermanat mit adamantananalogem Anion [Ge4Se10]4-/ Tl4Ge4Se10, a Thallium(I) Selenogermanate with the Adamantane-Like Anion [Ge4Se10]4-. Z. Naturforsch. 1981. 36. Р. 521-523.

Akinocho G., Houenou P., Oyetola S., Eholie R., Jumas J. C., Olivier-Fourcade J., Maurin M. Étude structurale de Tl4SnSe4. J. Solid State Chem. 1991. 93(2). Р. 336-340.

Jaulmes S., Houenou P., Structure cristalline du seleniure d'etain(IV) et de thallium(I): Tl2SnSe3. Mater. Res. Bull. 1980. 15(7). Р. 911-915.

Henao J.A., Delgado J.M., Quintero M., X-ray powder diffraction data and structural study of Fe2GeSe4. Powder Diffr. 1998. 13(4) Р. 202-209.

Akselrud L.G., Zavalii P.Yu., Grin Yu. et al., J. WinCSD: software package for crystallographic calculations (Version 4). J. Appl. Cryst. 2014. 47. Р. 803-805.

Ketelaar J.A., t’Hart W.H., Moerel M., Polder D. The Crystal Structure of TlSe, Thallous Thallic or Thallosic Selenide. Z. Kristallog. A. 1939. 101 Р. 396-404.

Müller D., Eulenberger G., Hahn H. Über ternäre Thalliumchalkogenide mit Thalliumselenidstruktur. Z. Anorg. Allg. Chem, 1973. 398. Р. 207–220.

##submission.downloads##

Опубліковано

2021-05-11

Як цитувати

ОЛЕКСЕЮК, І., СЕЛЕЗЕНЬ, А., СМІТЮХ, О., ГУЛАЙ, Л., & ПІСКАЧ, Л. (2021). ТЕТРАРНІ ХАЛЬКОГЕНІДИ СИСТЕМ Tl2X–BIIX–DIVX2 (BII – Cd, Hg, DIV– Si, Ge; X – Se, Te). Проблеми хімії та сталого розвитку, (2), 26-37. https://doi.org/10.32782/pcsd-2021-2-5

Статті цього автора (авторів), які найбільше читають