РНYSICO-CHEMICAL INTERACTION IN Ag2S – {As, Sb, Bi}2S3 – GeS2 SYSTEMS
DOI:
https://doi.org/10.32782/pcsd-2024-3-2Keywords:
X-ray phase analysis, differential thermal analysis, isothermal sections, phase diagrams, eutectic interactionAbstract
Physico-chemical interactions in the Ag2S – As2S3 – GeS2, Ag2S – Sb2S3 – GeS2 and Ag2S – Bi2S3 – GeS2 systems at 500 K was investigated. Minor single-phase regions exist in the quasi-ternary system Ag2S – As2S3 – GeS2 at 500 K that are based on the initial compounds Ag2S, As2S3, GeS2 and ternary compounds of the boundary systems: Ag3AsS3, AgAsS2, Ag10Ge3S11, Ag2GeS3. The homogeneity region of Ag8GeS6 extends up to 20 mol.% along the Ag3AsS3 – Ag8GeS6 section. The existence of thirteen two-phase equilibria was found, five of which are inside the quasi-ternary system, which divide the concentration triangle into ten three-phase fields. Vertical section Sb2S3 – GeS2 was investigated in the Ag2S – Sb2S3 – GeS2 system; the section is of the eutectic type of interaction with coordinates of 35 mol. % GeS2 at 747 K (L↔α+GeS2). The formation of quaternary compounds of the compositions Ag11Sb3GeS12 and Ag8SbGe3S11 was established for the first time. The first thiosalt is formed at the intersection of AgSbS2 – Ag8GeS6 and Ag3SbS3 – Ag2GeS3; the single-phase nature of the sample of this composition was determined by scanning electron microscopy. The quaternary phase Ag8SbGe3S11 is formed at the intersection of Sb2S3 – Ag10Ge3S11 and Ag3SbS3 – Ag2GeS3. The system has minor solid solutions ranges of the original Sb2S3 and Ag2GeS3 that do not exceed 5 mol.% at the annealing temperature. The quasi-ternary system features ten single-phase regions, Ag2S, Sb2S3 (α-solid solution), GeS2, Ag3SbS3, AgSbS2, Ag8GeS6, Ag10Ge3S11, Ag2GeS3 (β-solid solution), Ag11Sb3GeS12, ~Ag23Sb3Ge7S30 and nineteen two-phase equilibria, of which eleven are inside the quasi-ternary system; together, they divide the concentration triangle into ten three-phase regions. Isothermal section of the quasi-ternary system Ag2S – Bi2S3 – GeS2 at 500 K, similarly to one with arsenic, features no new phases. Single-phase regions up to 5 mol.% based on bismuth-containing compounds Bi2S3, AgBi3S5 AgBiS2 were found. Investigated phase diagram of the Bi2S3–GeS2 system is of the eutectic type (Type V of Rooseboom classification). The eutectic coordinates are 860 K and 52 mol.% GeS2. Eight single-phase fields, Ag2S, Bi2S3 (α-solid solution), GeS2, AgBiS2 (β-solid solution), AgBi3S5 (γ-solid solution), Ag8GeS6, Ag10Ge3S11, Ag2GeS3, were found in the system under given synthesis conditions. Thirteen two-phase equilibria, five of which are inside the quasi-ternary system, separate the triangle into six three-phase fields.
References
Karashanova D., Nihtianova D., Starbova K., Starbov N. Crystalline structure and phase composition of epitaxially grown Ag2S thin films. Solid State Ionics. 2004. Vol. 171. № 3-4. P. 269–275. DOI: https://doi.org/10.1016/j.ssi.2004.04.020
El-Nahass M. M., Farag A. A. M., Ibrahim E. M., Abd-El-Rahman S. Structural, optical and electrical properties of thermally evaporated Ag2S thin films. Vacuum. 2004. Vol. 72. № 4. Р. 453–460. DOI: https://doi.org/10.1016/j.vacuum.2003.10.005
Prabhune V. B., Shinde N. S., Fulari V. J. Studies on electrodeposited silver sulphide thin films by double exposure holographic interferometry. Applied Surface Science Applied Surface Science. 2008. Vol. 255. № 5. P. 1819–1823. DOI: https://doi.org/ 10.1016/j.apsusc.2008.06.022
Sadovnikov S. I., Gusev A. I., Rempel A. A. Artificial silver sulfide Ag2S: Сrystal structure and particle size in deposited powders. Superlattices and Microstructures. 2015. Vol. 83. P. 35–47. DOI: https://doi.org/10.1016/j.spmi.2015.03.024.
Sadovnikov S. I., Gusev A. I., Churkin A. V., Rempel A. A. High-temperature X-ray diffraction and thermal expansion of nanocrystalline and coarse-crustalline acantite α-Ag2S and argentite β-Ag2S. Physical Chemistry Chemical Physics. 2016. Vol. 18. № 6. P. 4617–4626. DOI: https://doi.org/10.1039/c5cp07224g
Олексеюк І. Д. Бінарні і тернарні напівпровідникові фази в системах Ме−ВV−CVI [DVII]. Луцьк : РВВ «Вежа» ВДУ ім. Лесі Українки, 1995. 348 с.
Анатичук Л. І. Термоелементи та термоелектричні пристрої: Довідник. Київ : Наукова думка, 1979. 768 с.
Ge Z. H., Zhang B. P., Shang P. P., Li J. F. Control of anisotropic electrical transport property of Bi2S3 thermoelectric polycrystals. Journal of Materials Chemistry. 2011. № 25. Р. 9194. DOI: https://doi.org/10.1039/ c1jm11069a
Kim C., Kozaki I., Kim J., Lee S.Y. Highly Efficient (>9%) Lead-Free AgBiS2 Colloidal Nanocrystal/Organic Hybrid Solar Cells. Advanced Energy Materials. 2022. Vol. 12. P. 2–9.
Zhang L., Zhu C., Chen T. Solution processed AgSbS2 film for efficient planar heterojunction solar cells. Applied Physics Letters. 2021. Vol. 119. P. 1–7.
Reshak A. H., Auluck S., Piasecki M., Myronchuk G. L. et al. Absorption and photoconductivity spectra of Ag2GeS3 crystal: experiment and theory. Spectrochimica Acta Part A. Molecular and Biomolecular Spectroscopy. 2012. Vol. 93. P. 274–279.
Lin Y., Fang S., Su D., Brinkman K. S., Chen F. Enhancing grain boundary ionic conductivity in mixed ionicelectronic conductors. Nature Communications. 2015. Vol. 6. P. 6824. DOI: 10.1038/ncomms7824.
Wehmeier F. H., Laudise R. A., Shiever J. W. The system Ag2S 13. Wehmeier F. H., Laudise R. A., Shiever J. W. The system Ag2S – As2S3 and growth of crystals of proustite, smithite and pyrargyrite. Materials Research Bulletin. 1968. Vol. 3. Р. 767–778.
Bryndzia L. T., Kleppa O. J. High-temperature reaction calorimetry of solid and liquid phases in the quasi-binary system Ag2S – Sb2S3. Geochimica et Cosmochimica Acta. 1989. Vol. 52. P. 67–176.
Tesfaye F., Lindberg D. Thermochemical properties of selected ternary phases in the Ag–Bi–S. Journal of Materials Science. 2016. Vol. 51. P. 5750–5759. DOI: https://doi.org/10.1007/s10853-016-9877-8
Hellner E., Burzlaff H. Die Struktur des Smithits AgAsS2. Naturwissenschaften. 1964. Vol. 51. № 2. P. 35−36.
Matsumoto T., Nowacki W. The crystal structure of trechmannite, AgAsS2. Zeitschrift für Kristallographie, Kristallgeometrie, Kristallphysik, Kristallchemie. 1969. № 129. P. 163–177.
Walenta K. Cuboargyrit, ein neues Silbermineral aus dem Schwarzwald. Lapis. 1998. Vol. 23. № 11. Р. 21–23.
Smith J. V., Pluth J. J., Han S. Crystal structure refinement of miargyrite AgSbS2. Mineralogical Magazine. 1997. Vol. 61. P. 671–675. DOI:10.1180/minmag.1997. 061.408.05
Harker D. The application of the three-dimensional patterson method and the crystal structures of proustite, Ag3AsS3 and pyrargyrite, Ag3SbS3. Journal of Chemical Physics. 1936. Vol. 4. P. 381−390.
Bryndzia L. T., Kleppa O. J. High-temperature reaction calorimetry of solid and liquid phases in the quasi-binary system Ag2S – Sb2S3. Geochimica et Cosmochimica Acta. 1988. Vol. 52. P. 67–176. DOI: https://doi.org/10.1016/0016-7037(88)90064-6
Chang L. L. Y. Dimorphic Relations in Ag3SbS3. American Mineralogist. 1963. Vol. 48. P. 429–432.
Кохан О. П. Взаємодія в системах Ag2X–BIVX2 (BIV – Si, Ge, Sn; X – S, Se) і властивості сполук : дис. … канд. хім. наук : 02.00.01. Ужгород, 1996. 21 с.
Nagel A., Range K.-J. Verbindungs bildung im System Ag2S – GeS2 – AgI. Zeitschrift für Naturforschung B. 1978. Vol. 33. Р. 1461–1464.
Tomashyk V. Ternary Alloys Based on IV-VI and IV-VI2 Semiconductors. United Kingdom, 2022. 382 p. DOI: https://doi.org/10.1201/9781003123507
Zmrhalová Z., Málek J., Švadlák D., Barták J. The crystallization kinetics of Sb2S3 in (GeS2)0.4(Sb2S3)0.6 glass. Physica Status Solidi (C). 2011. Vol. 8. № 11–12. P. 3127–3130. DOI:10.1002/pssc.201000771