PHASE EQUILIBRIA IN THE QUATERNARY SYSTEM LA-LI-NI-GE AT A TEMPERATURE OF 400 °С
DOI:
https://doi.org/10.32782/pcsd-2025-1-7Keywords:
Lanthanum, Lithium, Nickel, Germanium, phase equilibria, synthesis, structure, solid solutionAbstract
In the work, using X-ray, phase and structural analyses and energy dispersion X-ray spectroscopy, the interaction of components in the La-Li-Ni-Ge system in the LaGe-LiGe-NiGe-Ge region was studied. The alloys were obtained by melting stoichiometric amounts of constituent elements and then annealing at 400 °C for 480 hours. Identification, calculation and indexing of diffractograms, refinement of parameters of elementary cells was carried out using packages of LATSON, POWDER CELL-2.3 programs. and WinCSD. Determination and refinement of the crystal structure by the powder method was performed using the FullPro program. For experimental determination of the amount of Lithium used the method of flame photometry. o confirm the phase composition of a number of the obtained system samples, the method of energy-dispersive X-ray spectroscopy (EDX) was used. In the experimentally studied area, for the first time, it was found that on the section between the triple compounds of LaLiGe2 and LaNiGe2 there are limited solid solutions of substitution of LaLixNi1 - xGe2 compounds (x = 0–0.31) (structural type SeNiSi2, Pearson symbol oS16, space group Cmcm, a = 0.4307–0.4309; b = 1.6905–1.6919; c = 0.4237–0.4239 nm) and LaLi1 - xNixGe2 (x = 0–0.32) (structural type CaLiSi2, Pearson symbol oP16, space group Pnma, a = 0.7851–0.7836; b = 0.4010–0.3997; c = 1.0884–1.0866 nm). Based on the ternary phase of the La2LiGe6, the minimum solubility of Nickel was established and, accordingly, the formation of a solid solution of the composition of La2Li1 - xNixGe6 (x = = 0–0.24) (structural type Pr2LiGe6, Pearson symbol oS18, space group Cmmm, a = 0.4187–0.4185; b = 2.1113–2.1110; c = 0.4391–0.4390 nm). The boundaries of the detected solid solutions were established according to the graphs of the change in the volume of elementary cells when replacing Lithium with Nickel and vice versa. The existence of five ternary compounds (LaNiGe2, LaNiGe3, LaNi0.5Ge1.5, LaLiGe2, La2LiGe6) is confirmed. Quaternary compounds of point composition are not formed in the region of the experiment.
References
Laffargue D., Bourée F., Chevalier B., Etourneau A., Roisnel T. Magnetic structure of the antiferromagnetic Kondo stannide Ce2Ni2Sn. Phys. B. 1999. Vol. 259/261. P. 46–47. doi:10.1016/s0921-4526(98)00734-0
Schobinger Papamantellos P., André G., Rodriguez Carvajal J., Buschow K. H. J., Durivault L. Magnetic ordering of CeNi0.78Sn2 and Ce3Ni2Sn7 compounds by neutron diffraction. J. Alloys Compd. 2001. Vol. 325. P. 29–36. https://doi.org/10.1016/S0925-8388(01)01358-5
Mudryk Y. S., Kaczorowski D., Romaka L. P., Bodak O. I., Grytsiv A. V., et al. Physical properties and superconductivity of skutterudite-related Yb3Co4.3Sn12.7 and Yb3Co4Ge13. J. Phys.: Condens. Matter 2001. Vol. 12. P. 7391-7402. DOI: https://doi.org/10.1088/0953-8984/13/33/319
Павлюк В. В., Бодак О. І., Кеворков Д. Г., Печарський В. К. Дослідження твердих розчинів LaLixCu2 - xSi2 та LaLixCu2 - xGe2 в системах {La, Ce}-Li-Cu-{Si, Ge} при 470 К. Доп. АН України. 1993. № 9. С. 87–89.
Матвіїшин Р.І. Взаємодія Ербію із перехідними металами (Co, Ni), Літієм та р-елементами IV групи (Si, Ge). Автореф. дис. канд. хім. наук. Львів, 2009.
Pavlyuk V., Stetskiv A., Rozdzynska-Kielbik B. The isothermal section of the phase diagram of Li – La – Ge system at 400 °C. Intermetallics. 2013. Vol. 43, P. 29-37. https://doi.org/10.1016/j.intermet.2013.07.002
Schuster H. U., Czybulka A. Die phase Li2CeGe. Z. Naturforsch. 1974. Bd. 29B. S. 9-10. https://doi.org/10.1515/znb-1974-9-1012
Jung Y., Nam G., Jeon J., Kim Y., You T. S. Crystal structure and chemical bonding of novel Li-containing polar intermetallic compound La11Li12Ge16. J. of Solid State Chemistry. 2012. Vol. 196. P. 543-549. DOI: https://doi.org/10.1016/j.jssc.2012.07.034
Fornasini M. L., Palenzona A., Pani M. Crystal chemical features of ternary phases in the R–Li–Ge (R – rare earth element) systems. Intermetallics. 2012. Vol. 31. P. 114–119. DOI: https://doi.org/10.1016/j.intermet.2012.06.011
Nam G., Jeon J., Kim Y., Kang S. K., You T.56S. Combined effect of chemical pressure and valence electron concentration through the electron-deficient Li substitution on the RE4LiGe4 (RE = La, Ce, Pr, and Sm) system. J. of Solid State Chemistry. 2013. Vol. 205. P. 10–20. DOI: https://doi.org/10.1016/J.JSSC.2013.06.027
Zhuang Y., Hu Z., Liu J., Lü J., Yan J. The 523 K isothermal section of La–Ni–Ge ternary system phase diagram. J. Alloys Compd. 2005. Vol. 387. P. 239-242. https://doi.org/10.1016/j.jallcom.2004.06.065
Morozkin A. V., Seropegin Yu. D., Gribanov A. V., Sviridov I. A., Kurenbaeva J. M. Analysis of the melting temperatures of RTX2 (CeNiSi2 structure) and RT2X2 (CeGa2Al2 structure) compounds [R = La, Ce, Sm, Er, Tm; T = Fe, Co, Ni; X = Si, Ge]. J. Alloys Compd. 1998. Vol. 264. P. 190–196. https://doi.org/10.1016/S0925-8388(97)00231-4
Guloy A.M., J.D. Corbett. The Lanthanum-Germanium System. Nineteen Isostructural Interstitial Compounds of the La5Ge3. Inorg. Chem. 1993. Vol. 32. P. 3532–3540. DOI: https://doi.org/10.1021/ic00068a025
Gold C., Scheidt E. W., Gross P., Peyker L., Eickerling G. Interplay between crystal field splitting and Kondo effect in CeNi9Ge4 - xSix. J. Phys.: Condens. Matter. 2012. Vol. 24. P. 1–12. DOI: https://doi.org/10.1088/0953-8984/24/35/355601
Anand V. K., Hossain Z., Geibel C. Magnetic and transport properties of PrTGe3 (T = Ni, Rh). Solid State Commun. 2008. Vol. 146. P. 335–339. DOI: https://doi.org/10.1016/j.ssc.2008.02.023
Buchholz W., Schuster H. U. Intermetallische Phasen mit B35-Überstruktur und Verwandtschaftsbeziehung zu LiFe6Ge6. Z. Anorg. Allg. Chem. 1981. Vol. 482. P. 40–48.
Schwarzenbach D. Program LATCON: refine lattice parameters. Lausanne: University of Lausanne, 1966.
Kraus W., Nolze G. PowderCell for Windows. Berlin: Federal Institute for Materials Research and Testing, 1999.
Akselrud L. G., Grin Yu. N. WinCSD: software package for crystallographic calculations (Version 4). J. Fppl Crystallogr. 2014. Vol. 47. P. 803–805. DOI: https://doi.org/10.1107/S1600576714001058
Rodriguez-Carvajal J. FULLPROF: A Program for Rietveld Refinement and Pattern Matching Analysis, version 3.5d; Laboratoire Léon Brillouin (CEA–CNRS): Saclay, France, 1998.
Stetskiv A. O., Havryshchuk L. M. Interaction of components in the La-Li-Ni-Si system at a temperature of 400 °С. SWorldJournal. 2024. Issue 24, Part 2. P. 60–67. URL: https://www.sworldjournal.com/index.php/swj/issue/view/swj24-02/swj24-02