PHASE DIAGRAMS OF THE С2ІІІX3 – DIVX2 SYSTEMS (СІІІ – AS, SB, BI; DIV – GE, SN; X – S, SE)
DOI:
https://doi.org/10.32782/pcsd-2025-2-5Keywords:
X-ray phase analysis; differential thermal analysis; phase diagrams; eutectic; peritecticAbstract
The results of experimental studies of phase diagrams of quasi-binary systems of the С2ІІІX3 – DIVX2 type are presented where СІІІ – As, Sb, Bi; DIV – Ge, Sn; X – S, Se. The samples were synthesized by direct co-melting of high-purity elements in evacuated ampoules; the maximum temperature was 1170 K. Themethods of powder X-ray diffraction and differential thermal analysis were used to identify the phases, determine the composition and nature of phase transitions. Investigated phase diagrams are characterized by different types of invariant processes, either peritecticor eutectic. The sulfide system As2S3 – GeS2 features peritectic interaction at 722 K with limited mutual solubility of the components in the solid state; a eutectic type of interaction was observed in the similar selenium-containing system As2Sе3 – GeSе2 (618 K, 20 mol.% GeSе2). The Sb2S3 – GeS2 system features eutectic type of interaction with the eutectic point at 747 K and 35 mol.% GeS2; glassy and glass-crystalline phases were observed in the intermediate range of compositions, which indicates a tendency to glass formation. The selenide system Sb2Se3 – GeSe2 similarly exhibits eutectic interaction with the eutectic point coordinates of 757 K, 58 mol.% GeSe2, absent of solid solutions and glassy state. The Bi2S3 – GeS2 section is also of the eutectic type (860 K; 52 mol.% GeS2) with the formation of solid solution ranges of the initial components. The systems involving tin (IV) sulfide and selenide exhibit eutectic: As2Se3 – SnSe2 (640 K, 19 mol.% SnSe2), Sb2S3 – SnS2 (737 K, 65 mol.% Sb2S3), Sb2Se3 – SnSe2 (773 K, 50 mol.% SnSe2), Bi2S3 – SnS2 (938 K, 42 mol.% SnS2), Bi2Se3 – SnSe2 (831 K, 67 mol.% SnSe2) and peritectic: As2S3 – SnS2 (727 K) types of interactions. The Sb2S3 – SnS2 system features the ternary phase Sb2SnS5 which is formed by the peritectic reaction L + SnS2 ↔ Sb2SnS5 at 765 K, while no ternary phases were found in selenide systems, indicating the effect of chemical bonding and structural factors on the stability of the phases. Additionally, eutectoid and peritectoid transformations associated with the phase transitions of GeS2 and SnS2 were recorded in some systems. Obtained results are important for further research into the quasi-ternary systems based on these binary compounds and the development of materials with controlled properties for electronics, photonics, and energy production.
References
Messina S., Nair M. T. S., Nair P. K. Solar cells with Sb2S3 absorber films. Thin Solid Films. 2009. Vol. 517. P. 2503–2507. DOI: https://doi.org/10.1016/j.tsf.2008. 11.060
Анатычук Л. І. Термоелементы и термоэлектрические устройства. Киев : Наукова думка. 1979. 768 с.
Srikanth S., Suriyanarayanan N., Prabahar S., Balasubramanian V., Kathirvel D. Structural and optical properties of chemical bath deposited Sb2S3 thin films. Advanced Applied Science Research. 2011. Vol. 2, № 1. P. 95–104.
Козьма А. А., Переш Є. Ю., Барчій І. Є., Сабов М. Ю., Габорець Н. Й., Кун Г. В. Про взаємозв’язок термоелектричних властивостей бінарних халькогенідів підгрупи арсену з елементарними вихідними компонентами. Науковий вісник Ужгородського університету. Серія Хімія. 2014. № 1(31). С. 19–24.
Nikolic P. M., Popovic Z. V. Some optical properties of GeS2 single crystals. Journal of Physics. 1979. Vol. 12, № 12. P. 1151–1156.
Inoue K., Matsuda O., Murase K. Raman spectra of tetrahedral vibrations in crystalline germanium dichalcogenides, GeS2 and GeSe2, in high and low temperature forms. Solid State Communications. 1991. Vol. 79, № 11. P. 905–910.
Burton L. A., Whittles T. J., Hesp D., Linhart W. M., Skelton J. M., Hou B., Webster R. F., O’Dowd G., Reece C., Cherns D., Fermin D. J., Veal T. D., Dhanak V. R., Walsh A. Electronic and optical properties of single crystal SnS2: an earth-abundant disulfide photocatalyst. Journal of Materials Chemistry A. 2016. Vol. 4. P. 1312–1318. DOI: https://doi.org/ 10.1039/C5TA08214E
Абрикосов Н. Х. и др. Полупроводниковые халькогениды и сплавы на их основе. М. : Наука, 1975. 219 с.
Mullen D. J. E., Nowacki W. Refinement of the crystal structures of realgar AsS and orpiment As2S3. Phase Transit. 1992. Vol. 38. P. 127–220.
Stergiou A. C., Rentzeperis P. J. The Crystal Structure of Arsenic Selenide, As2Se3. Zeitschrift für Kristallographie. 1985. V. 173. P. 185–191.
Bayliss P., Nowaski W. Refinement of the crystal structure of stibnite Sb2S3. Zeitschrift für Kristallographie. 1972. Vol. 135, № 2. P. 308–315.
Kyono A., Hayakawa A., Horiki M. Selenium substitution effect on crystal structure of stibnite (Sb2S3). Physics and Chemistry of Minerals. 2015. Vol. 42, № 6. P. 475–490.
Lin J.-C., Sharma R. C., Chang Y. A. The Bi–S (Bismuth–Sulfur) system. Journal of Phase Equilibria. 1996. Vol. 17, № 2. P. 132–139. DOI: https://doi.org/10.1007/ BF02665790
Lundegaard L. F., Makovicky E., Boffa-Ballaran T., et al. Crystal structure and cation lone electron pair activity of Bi2S3 between 0 and 10 GPa. Physics and Chemistry of Minerals. 2005. Vol. 32. P. 578–584. DOI: https://doi.org/10.1007/ s00269-005-0033-2
Chen Y., Liu Y., Chu M., Wang L. Phase diagrams and thermodynamic descriptions for the Bi–Se and Zn–Se binary systems. Journal of Alloys and Compounds. 2014. Vol. 617. P. 423–428. DOI: http://dx.doi.org/10.1016/j.jallcom.2014.08.001
Sosovska S. M., Yurchenko O. M., Romanyuk Y. E., Olekseyuk I. D., Parasyuk O. V. Phase diagram of the CdGa2Se4–Bi2Se3 system and growth of CdGa2Se4 single crystals. Journal of Alloys and Compounds. 2006. Vol. 417, Issues 1–2. P. 127–130. DOI: https://doi.org/10.1016/j.jallcom.2005.09.031
Tsyun-khua L., Pashinkin A. S., Novoselova A. V. Investigation of the Ge–S system. Dokladi Akademii nauk SSSR. 1963. Vol. 151, № 6. P. 1335–1336.
Dittmar G., Shäfer H. Die Kristallstructur von H. T.-GeS2. Acta Crystallographica. Section B. 1975. № 31. P. 2060–2064.
Dittmar G., Schäfer H. Die Kristallstructur von L. T.-GeS2. Acta Crystallographica. Section B. 1976. Vol. 32, № 4. P. 1188–1192.
Gokhale A. B., Abbaschian R. The Ge–Se (germanium-selenium) system. Bulletin of Alloy Phase Diagrams. 1990. Vol. 11, № 3. P. 257–263.
Popovic Z. V., Stolz H. J. Infrared and Raman spectra of germanium dichalcogenides-II: GeSe2. Physica Status Solidi B – Basic Solid State Physics. 1981. Vol. 108. P. 153.
Villars P. Pearson’s Handbook: Desk Edition. Materials Park, Ohio : ASM International, 1997. Vol. 1–2. 2886 p.
Grzechnik A., Stolen S., Bakken E., Grande T., Mezouar M. Structural transformations in three-dimensional crystalline GeSe2 at high pressures and high temperatures. Journal of Solid State Chemistry. 2000. Vol. 150. P. 121–127.
Karakhanova M. I., Pashinkin A. S., Novoselova A. V. O diagramme plavkosti olovo – sera. Neorganicheskie materiali. 1966. T. 2, № 6. S. 991–996.
Hazen R. M., Finger L. W. The crystal structures and compressibilities of layer minerals at high pressure. I. SnS2, berndtite. Phase Transition. 1992. Vol. 38. P. 127–220.
Guenter J. R., Oswald H. R. Neue polytype Form von Zinn(IV)-sulfid. Journal of Applied Crystallography. 1989. Vol. 22. P. 622–623.
Караханова М. И., Пашинкин А. С., Новоселова А. В. О диаграмме плавкости системы свинец – селен. Известия Академии наук СССР. Неорганические материалы. 1966. Т. 2, № 7. С. 138–141.
Palosz B., Salje E. Lattice parameters and spontaneous strain in AX2 polytypes: CdI2, PbI2, SnS2 and SnSe2. Journal of Applied Crystallography. 1989. Vol. 22. P. 622– 623.
Хімінець О. В., Баранова Л. П., Цигика В. В., Добош М. В., Хімінець В. В. Взаємодія і процеси склоутворення в системі GeS2–As2S3. Журнал неорганічної хімії. 1988. Вип. 33, № 6. С. 1541–1545.
Klymovych O., Ivashchenko I., Olekseyuk I., Zmiy O., Lavrynyuk Z. Quasi-ternarysystem Cu2Se – GeSe2 – As2Se3. Journal of Phase Equilibria and Diffusion. 2020. Vol. 41, № 2. P. 157–163.
Tomashyk V. Ternary Alloys Based on IV–VI and IV–VI2 Semiconductors. United Kingdom: CRC Press, 2022. 382 p. DOI: https://doi.org/10.1201/9781003123507
Березнюк О., Семенюк В., Кньовець А., Когут Ю., Піскач Л. Фізико-хімічна взаємодія в системах Ag2S – {As, Sb, Bi}2S3 – GeS2. Проблеми хімії та сталого розвитку. 2024. Вип. 3. С. 11–18. DOI: https://doi.org/10.32782/pcsd-2024-3-2
Блецкан Д. І. Кристалічні і склоутворюючі халькогеніди Si, Ge, Sn і сплави на їх основі: монографія. Т. 1. Ужгород : Закарпаття, 2004. 292 с.
Dra M., Mora Aznar T. Estudio de los mecanismos de cristalización primaria y eutéctica de aleaciones del sistema GeSe2 – Sb2Se3. Bellaterra, 1998. Thesis submitted for the degree of Doctor in Physics.
Zmiy O. F., Gulay L. D., Ostapyuk T. A., Klymovych O. S. Interaction of the components in the Ag2Se–SnSe2– As2Se3 system. Chemical Metals & Alloys. 2008. Vol. 1. P. 115–119.
Mamedov Sh. G. The phase equalibria of the Cu2SnS3 – Sb2S3 system. Bulletin of Tomsk State University. Chemistry Series. 2020. Vol. 18. P. 18–26. DOI: https:// doi.org/10.17223/24135542/18/2
Березнюк О., Смітюх О., Піскач Л. Система Cu2S – Sb2S3 – SnS2. Праці НТШ. Хімічні науки. 2023. Т. LXXIII. C. 45–58. DOI: https://doi.org/10.37827/ntsh.chem.2023.73.045
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.