PHASE EQUILIBRIA IN THE SYSTEMS Cu(Ag)2S – Sb2S3 – SnS2
DOI:
https://doi.org/10.32782/pcsd-2022-4-2Keywords:
isothermal sections; phase diagrams; quaternary compound; eutectic interactionAbstract
Phase equilibria in the quasi-ternary systems Cu(Ag)2S – Sb2S3 – SnS2 were investigated by X-ray diffraction, differential thermal and microstructure analysis methods. Isothermal sections at 500 K and key vertical sections of these systems were plotted from obtained results. It was established that the copper-containing system at the annealing temperature features six two-phase equilibria between binary and ternary compounds of the boundary side systems, with solid solutions upto 5-10 mol. %. Three vertical sections, Cu3SbS3 – Cu2SnS3, CuSbS2 – Cu2SnS3, Sb2S3 – Cu2SnS3, are quasi-binary systems of the eutectic type, with the coordinates 20, 7, and 13 mol. % Cu2SnS3 at 866 K, 796 K, 765 K, respectively. Two other sections, Sb2S3 – Cu4Sn7S16, Cu3SbS3 – Cu4SnS4, are non-quasibinary since Cu4Sn7S16 and Cu4SnS4 are formed in the solid phase, and Sb2SnS5 melts incongruently. The existence of a new quaternary compound of the Ag11SnSb3S12 composition was established for the first time in the Ag2S – Sb2S3 – SnS2 system at 500 K at the crossing of AgSbS2 – Ag8SnS6 and Ag3SbS3 – Ag2SnS3 sections. Nine twophase equilibria between ten compounds were found in the system, with the solid solubility of 5-15 mol. % along the sections. Five of seven vertical sections are quasi-binary systems (Ag3SbS3 – Ag8SnS6, Ag3SbS3 – Ag2SnS3, AgSbS2 – Ag8SnS6, AgSbS2 – Ag2SnS3, AgSbS2 – SnS2); the AgSbS2 – Ag4Sn3S8 and AgSbS2 – Sb2SnS5 sections are non-quasibinary due to peritectic formation of Ag4Sn3S8 and Sb2SnS5. The presented phase diagrams of the silver-containing sections Ag3SbS3 – Ag8SnS6, AgSbS2 – Ag8SnS6, AgSbS2 – Ag2SnS3 and AgSbS2 – SnS2 are of the eutectic type with coordinates 10 mol. % Ag8SnS6 at 738 K, 12 and 30 mol. % Ag8SnS6 at 747 K and 742 K, 30 mol. % Ag2SnS3 at 750 K, and 25 mol. % SnS2 at 741 K, respectively. The quaternary compound Ag11SnSb3S12 melts congruently at 920 K and has a polymorphous transitionat 649 K. The phase has variable composition, its homogeneity range extends from 16 to 27 mol. % Ag8SnS6 at the temperatures of invariant eutectic processes,and from 20 to 25 mol. % Ag8SnS6 at 500 K. The in variant processes associated with phase transitions of Cu3SbS3, AgSbS2 and Ag11SnSb3S12 have eutectoid character.
References
Chen L., Xia Y.D., Liang X.F., Yin K.B., Yin J., Liu Z.G., Chen Y. Nonvolatile Memory Devices with Cu2S and
Cu-Pc Bilayered Films. Applied Physics Letters. 2007. Vol. 91. P. 073511-073513. doi: 10.1063/1.2771064
Pal’yanova G.A., Chudnenko K.V., Zhuravkova T.V. Thermodynamic properties of solid solutions in the system
Ag2S–Ag2Se. Thermochimica Acta. 2014. Vol. 575. P. 90–96.
Miyatani S. Ionic conductivity in silver chalcogenides. Journal of the Physical Society of Japan. 1981. Vol. 50.
№ 10. P. 3415–3418.
Burton L.A., Whittles T.J., David Hesp, Linhart W.M., Skelton J.M., Bo Hou, Webster R.F., O'Dowd G., Reece
C., Cherns D., Fermin D.J., Veal T.D., Dhanak V.R., Walsh A. Electronic and optical properties of single crystal SnS2:
an earth-abundant disulfide photocatalyst. Journal of Materials Chemistry A. 2016. Vol. 4. P. 1312–1318. doi: 10.1039/
C5TA08214E
Бабанлы М.Б., Юсибов Ю.А., Абишов В.Т. Трехкомпонентные халькогениды на основе меди и серебра.
Баку: Изд-во БГУ. 1993. 342 с.
Avellaneda D., Nair M.T., Nair P.K. Cu2SnS3 and Cu4SnS4 thin films via chemical deposition for photo-voltaic
application. Journal Termochem. Soc. 2010. Vol. 158. № 6. Р. 346–352.
Fiechter S., Martinez M., Schmidt G., Henrion W., Tomm Y. Phase relations and optical properties of semiconducting
ternary sulfides in the system Cu–Sn–S. Journal of Physics and Chemistry of Solids. 2003. № 64. Р. 1859–1862. doi:
1016/S00223697 (03)00172-0
Aliyeva Z.M., Bagheri S.M., Aliev Z.S., Alverdiyev I.J., Yusibov Y.A., Babanly M.B. The phase equilibria in
the Ag2S–Ag8GeS6–Ag8SnS6 system. Journal of Alloys and Compounds. 2014. Vol. 611. P. 395–400. doi: 10.1016/j.
jallcom.2014.05.112
Абрикосов Н.Х., Банкина В.Ф., Порецкая Л.В. [и др.] Полупроводниковые халькогениды и сплавы на их
основе. Москва, 1975. 219 с.
Sharma R.C., Chang Y.A. The Ag−S (silver-sulfur) system. Bulletin of Alloy Phase Diagrams. 1986. Vol. 7.
№ 3. P. 263–269.
Binary alloy phase diagrams / T.B. Massalski and other. Ohio: American Society for Metals, 1986. 1110 p.
Лякишева Н.П. Диаграммы состояния двойных металлических систем: справочник. Москва: Машиностро-
ение, 1996. 992 с.
Лякишева Н.П. Диаграммы состояния двойных металлических систем: справочник. Москва: Машиностро-
ение, 2000. 872 с.
Bayliss P., Nowacki W. Refinement of the crystal structure of stibnite, Sb2S3. Zeitschrift für Kristallographie. 1972.
V. 135. P. 308–315. doi: 10.1524/ZKRI. 1972.135.3-4.308
Караханова М.И., Пашинкин А.С., Новоселова А.В. О диаграмме плавкости олово – сера. Неорганические
материалы. 1966. Вып. 2. № 6. 991–996.
Arora S.K., Patel D.H., Agarwal M.K. Microtopographical Characterization of Vapour-grown SnS2 Single Crystals.
Crystal Research and Technology. 1993. Vol. 28. № 5. P. 623–627. doi: 10.1002/crat.2170280509
Guenter J.R., Oswald H.R. Neue polytype Form von Zinn(IV)-sulfid. Journal of Applied Crystallography. 1989.
V. 22. P. 622–623.
Рустамов П.Г., Курбанова Р.Д., Мовсумзаде А.А. Исследование тройной системы Sn – Sb – S по разрезу
SnS2–Sb2S3. ДАН АзССР. 1987. Вып. 43. № 1. C. 27–31.
Мамедов Ш.Г. Фазообразование в системе Cu2SnS3 – Sb2S3. Вестник Томского государственного универси-
тета. Серия «Химия». 2020. № 18. С. 18–26.
Мамедов Ш.Г. Фазовые равновесия в системе Cu2SnS3 – Cu3SbS3. Вестник Томского государственного
университета. Серия «Химия». 2019. № 15. С. 26–35.
Мамедов Ш.Г. Квазибинарный разрез Ag2SnS3 – Sb2S3. Известия Саратовского университета. Серия
«Химия. Биология. Экология». 2020. Т. 20. Вып. 1. С. 49–54. doi: 10.18500/1816-9775-2020-20-1-49-54
Mammadov Sh.H., Mammadov A.N., Kurbanova R.C. Quasi-Binary Section Ag2SnS3 – AgSbS2. Russian Journal
of Inorganic Chemistry. 2020. Vol. 65. Р. 217–221.
Ильяшева Н.А. Диаграмма состояния системы Cu2S–Sb2S3. Известия Академии наук СССР. Неорганичес-
кие материалы. 1973. Вып. 9. № 10. С. 1677–1679.
Balic Zunic T., Makovicky E. The crystal structure of skinnerite, P21/c – Cu3SbS3, from powder data. Canadian
Mineralogist. 1995. Vol. 33. P. 655–663.
Pfitzner A. Disorder of Cu+ in Cu3SbS3: structural investigations of the high- and low-temperature modification.
Zeitschrift für Kristallographie. 1998. Vol. 213. P. 228–236.
Hofmann W. Strukturelle und morphologische Zusammenhaenge bei Erzen vom Formeltyp ABC2. Zeitschrift für
Kristallographie, Kristallgeometrie, Kristallphysik, Kristallchemie. 1932. Vol. 84. P. 177–203.
Skinner B.J., Luce F.D., Makoviсki E. The crystal structure of the compound CuSbS2. Journal of the American
Chemical Society. 1970. Vol. 31. № 1. P. 19–24.
Olekseyuk İ.D., Dudchak I.V., Piskach L.V. Phase equilibria in the Cu2S–ZnS–SnS2 system. Journal of Alloys and
Compounds. 2004. Vol. 368. P. 135–143. doi: 10.1016/j.jallcom.2003.08.084
Alias M.F.A., Naji I.S., Taher B.Y., Al-Douri A.A.J. Synthesis Cu2SnS3 and Cu3SnS4 nanopowder and studing the
composition, structural and morphological properties. Journal of Non-oxide Glasses. 2016. Vol. 8. № 4. P. 93–97
Chen X., Sato A., Wada H., Mieno M. Nozakin. Synthesis, Electrical conductivity and Crystal Stucture of
Cu4Sn7S16 and Stucture refinement of Cu2SnS3. Journal of Solid State Chemistry. 1998. Vol. 139. P. 144–151.
Yusuke M., Atsushi M., Naoya L. Preparation of monoclinic Cu2SnS3, single crystal by chemical vapor transport
with lodine. Materials Letters. 2016. Vol. 170. № 1. P. 154–160.
Jaulmes S., Rivet J., Laruelle P. Cuivre–etain–soufre Cu4SnS4. Acta Crystallographica B. 1977. Vol. 33. P. 540–542.
Bryndzia L.T., Kleppa O.J. High-temperature reaction calorimetry of solid and liquid phases in the quasi-binary
system Ag2S – Sb2S3. Geochimica et Cosmochimica Acta. 1988. V.52. P. 167–176.
Chang L.L.Y. Dimorphic Relation in Ag3SbS3. American Mineralogist. 1963. Vol. 48. P. 429–432.
Kutoglu A. Die Struktur des Pyrostilpnits (Feuerblende) Ag3SbS3. Neues Jahrbuch für Mineralogie, Monatshefte.
Vol. 10. P. 145–160.
Golovey M.I., Gurzan M.I., Olexeyuk I.D., Rez I.S., Voroshilov Yu.V., Roman I.Yu. Preparation and Some
Physical-Chemical Properties of Synthetic Pyrargyrite Single Crystals. Krist. Tech. 1973. Vol. 8. P. 453–456.
Koh J., Itagaki K. Measurements of thermodinamic quantities for molten Ag2S–Sb2S3 and Cu2S–
Ni3S2 systems by quantitative thermodynamic analysis. Transactions of the Japan Institute of Metals. 1984. V. 25.
№ 5. P. 367–373.
Smith J.V., Pluth J.J., Han S. Crystal structure refinement of miargyrite, AgSbS2. Mineralogical Magazine.
Vol. 61. P. 671–675.
Кохан О. П. Взаємодія в системах Ag2X–BIVX2 (BIV – Si, Ge, Sn; X – S, Se) і властивості сполук : дис. … канд.
хім. наук. 02.00.01. Ужгород, 1996. 21 с.
Gorochov O. Les composés Ag8MX6 (M = Si, Ge, Sn et X = S, Se, Te). Bulletin de la Société Chimique de France.
Vol. 6. P. 2263–2275.
Wang N. New data for Ag8SnS6 (canfeildite) and Ag8GeS6 (argyrodite). Neues Jahrbuch für Mineralogie-
Abhandlungen. 1978. Р. 269–272.
Belandria E., Avila R., Fernández B. J. Sunthesis and сharacterizition of the еernary сompound Ag2SnS3. Japanese
Journal of Applied Physics. 2000. Vol. 39. P. 132–133. doi: 10.7567/jjaps.39s1.132.
Fedorchuk A.O., Zhbankov O.Ye., Lakshminarayana G. Synthesis and spectral features of Ag2SnS3 crystals.
Materials Chemistry and Physics. 2012. Vol. 135. № 2–3. P. 249–253.
Amiel O., Frankel D.C., Wada H. Crystal structure of a new silver thiostannate Ag4Sn3S8. Journal of Solid State
Chemistry. 1995. Vol. 116. P. 409–421.
Kraus W., Nolze G. Powder cell – a program for the representation and manipulation of crystal structures and
calculation of the resulting X-ray powder patterns. Journal of Applied Crystallography. 1996. Vol. 29. P. 301–303.
Rodríguez-Carvajal J. Recent developments of the program Full Prof. Commission on Powder Diffraction (IUCr).
Newsletter. 2001. Vol. 26. P. 12–19.