DEVELOPMENT OF AN INTERACTIVE TOOL FOR DETECTION AND ANALYSIS OF GEOSPATIAL ANOMALIES IN QGIS BASED ON SATELLITE DATA

Authors

DOI:

https://doi.org/10.32782/geochasvnu.2025.6.13

Keywords:

automated detection, geospatial anomalies, QGIS plugin, satellite remote sensing, geodynamic anomalies, spatial analysis, exogenous geological processes

Abstract

The article presents a methodology for automated detection of anomalous geospatial zones, implemented as a plugin for the QGIS geographic information system. The developed tool enhances the efficiency of spatial data analysis and enables rapid identification of territories with potential changes, which is essential for monitoring natural and anthropogenic processes. The proposed approach is based on the integration of threshold and statistical analysis of satellite imagery within the QGIS environment. The plugin provides interactive adjustment of image processing parameters and automatically detects geodynamic anomalies, which are subsequently vectorized and made available to the user for further interpretation. Testing of the plugin on InSAR-type satellite data confirmed its effectiveness in identifying zones of vertical ground displacement. The obtained results demonstrate the practical applicability of the tool for geodynamic monitoring and highlight promising directions for future development, particularly the implementation of separate processing of positive and negative displacements to improve the accuracy of anomaly identification.

References

Folini A., Lenzi E., Biraghi, C. A. Cluster analysis: A comprehensive and versatile QGIS plugin for pattern recognition in geospatial data. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences. 2022. XLVIII–4/W1–2022. Р. 151–157. DOI: 10.5194/isprs-archives-XLVIII- 4-W1-2022-151-2022

Gavade A. B., Rajpurohit V. S. Systematic analysis of satellite image-based land cover classification techniques: literature review and challenges. International Journal of Computers and Applications. 2021. Vol. 43 (6). P. 514‒523. DOI: 10.1080/1206212X.2019.1573946

Hudak V., Kril T., Zatserkovnyi V. Remote monitoring of vertical ground displacements as indicators of underground structure deformation. Bulletin of Taras Shevchenko National University of Kyiv. Geology. 2025. Vol. 1 (108). P. 94‒102. DOI: 10.17721/1728-2713.108.13

Hudak V., Kril Т. Gaussian Process Regression for D-InSAR Analysis of Vertical Surface Displacements Above Underground Structures. 18th International Conference Monitoring of Geological Processes and Ecological Condition of the Environment. European Association of Geoscientists & Engineers. 2025. № 1. P. 1‒5. DOI: 10.3997/2214-4609.2025510054

Hytla P. C., Hardie R. C., Eismann M. T., Meola J. Anomaly detection in hyperspectral imagery: Comparison of methods using diurnal and seasonal data. Journal of Applied Remote Sensing. 2009. Vol. 3 (1). P. 033546.

Janz A., Jakimow B., van der Linden S., Thiel F., Dierkes H. AVHYAS: A free and open-source QGIS plugin for advanced hyperspectral image analysis. 2021 International Conference on Emerging Techniques in Computational Intelligence (ICETCI). IEEE. 2021. DOI: 10.1109/ICETCI51973.2021.9574057

Jain A., Duin R., Mao J. Statistical pattern recognition: A review. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2000. Vol. 22 (1). P. 4–37. DOI: 10.1109/34.824819

Коцюбівська К. І., Тимошенко В. В. Математичні методи обробки зображень. Цифрова платформа інформаційних технологій у соціокультурній сфері. 2019. № 2 (1). С. 41–54. DOI: 10.31866/2617-796x.2 .1.2019.175653

Kruglov O., Hudak V., Kruhlov B. Exploring D-InSAR Technology for Monitoring Soil Erosion: Case Study in Kharkiv Region. 18th International Conference Monitoring of Geological Processes and Ecological Condition of the Environment. European Association of Geoscientists & Engineers. 2025. № 1. P. 1‒5. DOI: 10.3997/2214-4609.2025510037

MASAI Project. (n.d.). MASAI: Pioneering damage assessment through AI and satellite technology. URL: https://masai-project.eu/masai-pioneering-damage-assessment-through-ai-and-satellite-technology/ (дата звернення: 08.04.2025).

Minh D. H. T., Hanssen R., Rocca F. Radar interferometry: 20 years of development in time series techniques and future perspectives. Remote Sensing. 2020. Vol. 12 (9). P. 1364. DOI: 10.3390/rs12091364

QGIS Project. Fetching plugins. QGIS Documentation. URL: https://docs.qgis.org/3.40/en/docs/training_manual/qgis_plugins/fetching_plugins (дата звернення: 08.04.2025).

Tempa K., Aryal K. R. Semi-automatic classification for rapid delineation of the geohazard-prone areas using Sentinel-2 satellite imagery. SN Applied Sciences. 2022. № 4 (1). P. 141. DOI: 10.1007/s42452-022-05028-6

Жуков М. М. Математична статистика та обробка геологічних даних. Київ : Вища школа, 2008.

Published

2025-12-30

Issue

Section

РОЗДІЛ V. ГЕОЕКОЛОГІЯ ТА ГЕОІНФОРМАТИКА