OPTICAL ABSORPTION OF GLASSES IN THE Ga2S3-GeS2-Sb2S3 SYSTEM DOPED WITH Er AND Nd
DOI:
https://doi.org/10.32782/pet-2025-1-16Keywords:
optical absorption, glassy alloys, chalcogenide semiconductor, band gap, erbium, neodymiumAbstract
Optical absorption in chalcogenide semiconductors is important from both fundamental and applied perspectives. The analysis of optical absorption spectra in chalcogenide glassy alloys helps reveal the electronic structure and the nature of chemical bonds in these materials, contributing to a deeper understanding of the physics of disordered systems. Studies of the optical properties of chalcogenide glasses assist in the development of new materials with improved characteristics and help identify defects and impurities that may influence their optical and photoelectrical properties.The optical absorption spectra of glasses with compositions of 20 mol.% Ga2S3 – 60 mol.% GeS2 – 20 mol.% Sb2S3 and 25 mol.% Ga2S3 – 30 mol.% GeS2 – 45 mol.% Sb2S3 simultaneously doped with Er and Nd were studied in the range of 550 – 2000 nm at room temperature. The edge of optical absorption of the glasses is located around 600 nm and does not undergo significant changes upon doping with Er and Nd. Narrow absorption bands were registered with maxima at 655, 755, 810, 885, 980, and 1540 nm, corresponding to transitions in the f-shells of Er3+ and Nd3+ ions.From the graph defining the edge of optical absorption, the optical band gap of the glasses was estimated by extrapolating the linear portion of the experimental curve to the intersection with the abscissa axis. It was found that with an increase in the Sb2S3 content (from 20 to 45 mol.%), the optical absorption edge shifts towards longer wavelengths, resulting in a decrease in the band gap of the studied glassy alloys. The addition of (1 – 3) mol.% Er2S3 does not lead to significant changes in the band gap, and with further increases in this component, a slight increase (~ 0.04 eV) in the band gap was recorded.The low values of the absorption coefficient in the 1000 – 2000 nm range indicate promising prospects for the use of these glasses in optoelectronic devices operating in the near-infrared range.
References
Eggleton B. J., Luther-Davies B., Richardson K. Chalcogenide photonics. Nature Photonics 2011. Vol. 5, 141–148.
Heo J., Chung W.J., Adam J.-C., Zhang X. Rare-earth-doped chalcogenide glass for lasers and amplifiers. Chalcogenide Glasses. Preparation, Properties and Applications. Cambridge, UK : Woodhead Publishing Limited 2014, p. 347–378.
Chen P. Ailavajhala M., Mitkova M. et al. Structural Study of Ag-Ge-S Solid Electrolyte Glass System for Resistive Radiation Sensing. IEEE. Microelectronics and Electron Devices 2011. 1–4.
Кевшин А.Г., Галян В.В., Давидюк Х.Є., Парасюк О.В., Мазурець І.І. Концентраційна залежність оптичних властивостей склоподібних сплавів у системі HgS–Ga2S3–GeS2. Фізика та хімія скла. 2010, № 36, с. 27–32.
Галян В. В., Кевшин А. Г., Іващенко І. А., Шевчук М. В. Вплив заміни S на Se на спектри оптичного поглинання склоподібних сплавів Ag1,6Ga1,6Ge31,2S61,6-xSex. Фізика і хімія твердого тіла. 2016. Т. 17. № 3. c. 342–346.
Mott N.F. Davis E.A. Electronic Processes in Non‐Crystalline Materials. Oxford: Clarendon‐Press. 1971. p.437.
Студеняк І.П., Сусліков Л.М. Оптичні властивості кристалічних та некристалічних матеріалів. навчальний посібник. Ужгород: Видавництво УжНУ “Говерла”. 2021. 272 с.
Lozano W., Ara C. B., Ledemi Y., Messaddeq Y. Upconversion luminescence in Er3+ doped Ga10Ge25S65 glass and glass-ceramic excited in the near-infrared. J. Appl. Phys. 2013. Vol.113. p. 083520-1–083520-6.
Halyan V. V., Strelchuk V. V., Yukhymchuk V. O. Role of structural ordering on optical properties of the glasses Ag0,05Ga0,05Ge0,95S2–Er2S3. Physica B Condens. Matter. 2013. Vol. 411. № 15. p. 35–39.
Shen X., Nie Q., Xu T., Dai Sh., Wang X. Temperature dependence of upconversion luminescence in erbium-doped tellurite glasses. J. Lumin. 2010.Vol. 130. p.1353–1356.
Pan Q., Yang D., Dong G., Qiu J., Yang Z. Nanocrystal-in-glass composite (NGC): A powerful pathway from nanocrystals to advanced optical materials. Prog. Mater. Sci. 2022. Vol. 130. p. 100998.