INTERACTIONS IN THE Tl2Se–Zn(Cd, Hg)Se–GeSe2 SYSTEMS
DOI:
https://doi.org/10.32782/pcsd-2025-1-6Keywords:
quasi-ternary system, isothermal section, polythermal section, phase equilibria, solid solutions, quaternary compoundsAbstract
The nature of the physicochemical interaction in the quasi-ternary Tl2Se–Zn(Cd, Hg)Se–GeSe2 systems was studied using X-ray diffraction, differential thermal analysis, and microstructural analysis. Five new quaternary compounds were discovered in these systems: Tl2ZnGe3Sе8, Tl2СdGeSе4, Tl2СdGe3Sе8, Tl2HgGeSе4, and Tl2HgGe3Sе8. The existence of 7 small single-phase regions on the isothermal section of the Tl2Se–ZnSe–GeSe2 system was established at 570 K. They correspond to α, β, γ, δ, ε, η – solid solutions based on Tl2Se, ZnSe, GeSe2, Tl4GeSe4, Tl2GeSe3, respectively, and on the Tl2ZnGe3Sе8 compound. These single-phase fields are separated by 12 two-phase fields, between which there are 6 three-phase regions (α–β–δ, δ–β–ε, ε–β–Tl2ZnGe3Se8, ε–Tl2ZnGe3Se8–η, η–Tl2ZnGe3Se8–γ, γ–Tl2ZnGe3Se8–β). The nature of the physicochemical interaction in the Tl2Se–ZnSe section has been established, and the type of phase diagram is categorized as peritectic (Lр + β ↔ a). The isothermal section of the Tl2Se–CdSe–GeSe2 system at 570 K contains 9 single-phase regions: α, β, γ, δ, ε, η, ζ, σ, and θ. These fields correspond to solid solutions based on the compounds Tl2Se, CdSe, GeSe2, Tl4GeSe4, Tl2GeSe3, Tl2Ge2Sе5, Cd4GeSе6, Tl2СdGeSе4, and Tl2СdGe3Sе8, respectively. They are separated by 17 two-phase equilibria, between which there are 9 three-phase regions (α–β–δ, δ–β–σ, δ–σ–ε, ε–σ–θ, ε–θ–η, η–θ–γ, γ–θ–ζ, θ–β–ζ, σ–β–θ). The Tl2Se–CdSe section belongs to a eutectic type (Le ↔ a + β) with negligible solubility. The concentration triangle of the quasi-ternary system Tl2Se–HgSe–GeSe2 at 520 K contains 10 single-phase fields: α-, β-, γ-solid solutions based on binary compounds Tl2Se, HgSe, GeSe2; δ-, ε-, η-solid solutions based on ternary compounds Tl4GeSe4, Tl2GeSe3, Tl2Ge2Sе5, respectively, and four more compounds: Tl2Hg3Sе4, Hg2GeSе4, Tl2HgGeSе4, Tl2HgGe3Sе8. They are divided by 19 two-phase equilibria (α–Tl2Hg3Sе4, Tl2Hg3Sе4–β, α–δ, δ–ε, ε–η, η–γ, γ–Hg2GeSе4, Hg2GeSе4–β, δ–Tl2Hg3Sе4, δ–β, δ–Tl2HgGeSе4, ε–Tl2HgGeSе4, η–Tl2HgGeSе4, η–Tl2HgGe3Sе8, Tl2HgGe3Sе8–γ, Tl2HgGeSе4–β, Tl2HgGe3Sе8–β, Tl2HgGe3Sе8–Hg2GeSе4, Tl2HgGeSе4–Tl2HgGe3Sе8), between which there are 10 threephase regions. The crystal structure of the Tl2ZnGe3Sе8 and Tl2HgGe3Sе8 quaternary compounds was investigated by X-ray powder diffraction. These chalcogenides are isostructural and crystallize in the orthorhombic system SG P212121 (ST Cs2CdGe3Se8).
References
Massalski T., Okamoto H., Subramanian P., and Kacprzak L. Binary Alloy Phase Diagrams, 2nd Edition. ASM International, Materials Park, OH, USA. 1990. 1–3. 3542 р.
Kovách S., Nemcsics Á., Lábadi Z., Motrya S. Investigation of the Electronic Structure of Cd4GeSe6 by Photoelectrochemical and Photoluminescence Methods. Inorganic Materials. 2003. 39(2). P. 108–112.
McGuire M., Scheidemantel Th., Badding J., DiSalvo F. Tl2AXTe4 (A = Cd, Hg, Mn; X = Ge, Sn): Crystal Structure, and Thermoelectric Properties. Chem. Mater. 2005. 17. P. 6186–6191.
Vasilyev V., Minaev V., Batyunya L. Thermodynamic properties, phase diagrams and glass-formation of thallium chalcogenides. Chalcogenide Letters. 2013. 10(11). P. 485–507.
Pielmeier F, Landolt G, Slomski B., Muff S., Berwanger J., Eich A., Khajetoorians A., Wiebe J., Aliev Z., Babanly M., Wiesendanger R., Osterwalder J., Chulkov E., Giessibl F., Dil J. Response of the topological surface state to surface disorder in TlBiSe2. 2015. New J. Phys. 17. P. 023067. https://doi.org/10.1088/1367-2630/17/2/023067
Рибалка I., Тупіцина І., Гриньов Б., Вовк Р., Кислиця М., Хаджай Г., Бойко Г. Можливість отримання кристалів ZnSe з високою структурною досконалістю для кріогенної болометричної техніки. Вісник ХНУ імені В. Н. Каразіна, серія «Фізика». 2019. 30(1). С. 24–29. https://doi.org/10.26565/2222-5617-2019-30-03
Lonchakov A., Bobin S. Large linear magnetoresistance in single HgSe crystals induced by low-concentration Co impurity. Appl. Phys. Lett. 2021. 118(6). P. 062106. https://doi.org/10.1063/5.0032572
Moroz M., Demchenko P., Tesfaye F., Prokhorenko M., Mysina O., Soliak L., Yarema N., Prokhorenko S., Reshetnyak O. Thermodynamic properties of selected compounds of the Ag–In–Se system determined by the electromotive force method. Physics and Chemistry of Solid State. 2022. 23(3), 575–581. https://doi.org/10.15330/pcss.23.3.575-581
Cirignano M., Roshan H., Farinini E., Di Giacomo A., Fiorito S., Piccinotti D., Khabbazabkenar S., Di Stasio F., Moreels I. Blue CdSe/CdS core/crown nanoplatelet light-emitting diodes obtained via a design-of-experiments approach, Nanoscale. 2025. 17(1). P. 304–313. https://doi.org/10.1039/D4NR03461A
Mozolyuk M., Piskach L., Fedorchuk A., Olekseyuk I., Parasyuk O. The Tl2Se–HgSe–GeSe2 system and the crystal structure of Tl2HgGeSe4. Chem. Met. Alloys. 2013. 6. P. 55–62. https://doi.org/10.30970/cma6.0229
Parasyuk O., Olekseyuk I., Piskach L. X-ray powder diffraction refinement of Cu2ZnGeTe4 structure and phase diagram of the Cu2GeTe3–ZnTe system. J. Alloys Comp. 2005. 397(1–2). 169–172. https://doi.org/10.1016/j.jallcom.2005.01.032
Piskach L., Parasyuk O., Romanyuk Y. The Phase Equilibria in the Quasi-binary Cu2GeS3/Se3/–CdS/Se/ Systems. J. Alloys Comp. 2000. 299 (1–2). P 227–231.
Parasyuk O., Gulay L., Romanyuk Y., Piskach L., Phase diagram of the Cu2GeSe3–ZnSe system and crystal structure of the Cu2ZnGeSe4 compound. J. Alloys Comp. 2001. 329(1–2). P. 202–207.
Romanyuk Y., Parasyuk O. Phase equilibria in the quasi-ternary Cu2Se–ZnSe–GeSe2 system. J. Alloys Comp. 2003. 348(1–2). P. 195–202. https://doi.org/10.1016/S0925-8388(02)00852-6
Olekseyuk I., Marchuk O., Gulay L., Zhbankov O. Isothermal section of the Cu2Se–HgSe–GeSe2 system at 670 K and crystal structures of the Compounds Cu2HgGeSe4 and HT-modification of Cu2HgGeS4. ChemInform. 2005. 36(40). https://doi.org/10.1002/chin.200540006
Marchuk O., Olekseyuk I., Grebenyuk A. Phase equilibrium in the system Cu2Se–HgSe–GeSe2. J. Alloys Comp. 2008. 398(1–2). P. 80–84.
Piskach L., Parasyuk O. The Ag2GeS3 – CdS system. Polish. J. Chem. 1998. 72(6). P. 1112–1115.
Moroz M., Demchenko P., Prokhorenko M., Reshetnyak O. Thermodynamic Properties of Saturated Solid Solutions of the Phases Ag2PbGeS4, Ag0.5Pb1.75GeS4 and Ag6.72Pb0.16Ge0.84S5.20 of the Ag-Pb-Ge-S System Determined by EMF Method. J. Phase Equilib. Diffus. 2017. 38. 426–433. https://doi.org/10.1007/s11669-017-0563-6
Parasyuk O., Gulay L., Romanyuk Y., Olekseyuk I., Piskach L. The Ag2Se–HgSe–GeSe2 system and crystal structures of the compounds. J. Alloys Comp. 2003. 351(1–2). P. 135–144. https://doi.org/10.1016/S0925-8388(02)01023-X
Selezen A., Olekseyuk I., Myronchuk G., Smitiukh O., Piskach L. Synthesis and structure of the new semiconductor compounds Tl2BIIDIVX4 (BII–Cd, Hg; DIV–Si, Ge; X–Se, Te) and isothermal sections of the Tl2Se–CdSe-Ge(Sn)Se2 systems at 570 K. J. Solid State Chem. 2020. 289. P. 121422. https://doi.org/10.1016/j.jssc.2020.121422
Олексеюк І., Селезень А., Смітюх О., Гулай Л., Піскач Л. Тетрарні халькогеніди систем Tl2X–BIIX–DIVX2 (BII – Cd, Hg, DIV – Si, Ge; X – Se, Te). Проблеми хімії та сталого розвитку. 2021. 2. С. 26–37. https://doi.org/10.32782/pcsd-2021-2-5
Селезень А. Фазові рівноваги в системах Tl2Se–CdSe–Si(Ge, Sn)Se2 та споріднених, кристалічна структура і властивості проміжних фаз : дис. … докт. філос.: 102–Хімія. Луцьк, 2024. 176 с.
Guseinov F. H., Babanly M. B., Kuliev A. A. Phase equilibria and intermolecular inreraction in the TlSe. (Tl2Se)–CdSe systems. Inorg. Chem. 1981. 26(1). 215–217.
Mucha I., Wiglusz K. Phase studies on the quasi-binary thallium(I) selenide–cadmium selenide system. Thermochimica Acta. 2011. 526(1). Р. 107–110.
Mozolyuk M., Piskach L., Fedorchuk A., Olekseyuk I., Parasyuk O. The Tl2Se–HgSe–GeSe2 system and the crystal structure of Tl2HgGeSe4. Chem. Met. Alloys. 2013. 6. P. 55–62. https://doi.org/10.30970/cma6.0229
Selezen A., Kogut Y., Piskach L., Gulay L. New Quaternary Chalcogenides Tl2M IIM 3 IVSe8 and Tl2M IIM 4 IVX4. MPDI: Proceedings. 2020. 62(1). 3. https://doi.org/10.3390/proceedings2020062003
Asadov M., Babanly M., Kuliev A. (1982). Phase equilibria and thermodynamic properties of the Hg–Tl–Se system. J. Inorg. Chem. 27. P. 3173–3178.
Johnsen S., Peter S., Nguyen S., Song J., Jin H., Freeman A., Kanatzidis M. (2011). Tl2Hg3Q4 (Q = S, Se, and Te): High-Density, Wide-Band-Gap Semiconductors. Chem. Mater. 23. P. 4375–4383.
Мозолюк М. Фазові рівноваги та властивості фаз у системах Тl2X–BIIX–DIVX2 і ТlCIIIX2–DIVX2 (BII – Hg, Pb; CIII – Ga, In; DIV – Si, Ge, Sn; X – S, Se) : дис. … канд. хім. наук: 02.00.01. Ужгород, 2013. 250 с.
Селезень А., Піскач Л. Фізико-хімічна взаємодія в системах Tl2Se–Zn(Cd)Se. VІІ Всеукраїнська наукова конференція «Актуальні задачі хімії: дослідження та перспективи». Житомир, 19 квітня 2023. С. 137–138.
Філеп М., Сабов М. Квазіпотрійна система Tl2S–Tl2Se–Tl4PbSe3. Наук. вісник Ужгород. ун-ту. Серія Хімія. 2017. 1(37). 14–16.