THE CRYSTAL STRUCTURE OF PR3HG0.1GA1.67SE7 COMPOUND
DOI:
https://doi.org/10.32782/pcsd-2022-3-2Keywords:
rare earth metals, selenides, crystal structure, X-ray powder method, EDAX analysisAbstract
sample of the stoichiometric composition Pr3Hg0.1Ga1.6Se7, weighing 0.8 g, obtained by fusing simple substances in vacuumed (10 -2 Pa) quartz containers at a maximum synthesis temperature of 1100 °C. The crystal structure of selenide Pr3Hg0.1Ga1.6Se7 (a = 1.03539(3) nm, c = 0.63842(3) nm, RI = 0.0963, Rp = 0.2041) was studied by the X-ray powder method. It was established that the structure of the synthesized compound belongs to the structural type La3CuSiS7 (SG P63; SP hP24). The elemental composition of the Pr3Hg0.1Ga1.6Se7 (Pr: 23.12±2.74%; Hg: 0.49±0.14%; Ga: 14.72±0.91%; Se: 61.67±4.53%) selenide was confirmed by EDAX analysis. In the structure, praseodymium atoms are localized in site 6c and, together with selenium atoms, form trigonal prisms with one additional atom [Pr 3Se13Se21Se3]. Atoms of statistical mixtures M (0.088(5) Hg + 0.61(2) Ga), concentrated in site 2a, form octahedra [M 6Se1]. These octahedra are interconnected by faces and form columns in the direction of the c axis. In site 2b, Ga atoms are surrounded by four selenium atoms. The formed tetrahedra are oriented in the direction of the c axis and are isolated from each other. Galliumcontaining selenide Pr3Hg0.1Ga1.6Se7 based on praseodymium are promising chalcogenides based on which materials for nonlinear optics and thermoelectricity can be created.
References
Si, Q., Yu, R., Abrahams, E. High-temperature superconductivity in iron pnictides and chalcogenides. Nat. Rev. Mater. 2016. 1(4). Р. 1-10. doi:10.1038/natrevmats.2016.17
Tritt, T. Thermal Conductivity. Physics of Solids and Liquids. 2005. 1(4). Р. 105-121. doi:10.1007/b136496
Eggleton, B., Luther-Davies, B., Richardson, K. Chalcogenide photonics. Nat. Photon. 2011. 5(3). Р. 141-148. doi:10.1038/nphoton.2011.309
Spaldin, N. Magnetic Materials: Fundamentals and Applications. Cambridge Univer. Press. 2010. 2. P. 14-21. doi:10.1017/CBO9780511781599
Eliseev, A., Kuzmichyeva, G. Handbook on the physics and chemistry of rare earths. Elsevier Science Publishers B. 1990. 13(89). P. 191-281.
Смітюх О.В. Фазові рівноваги і кристалічна структура проміжних фаз у системах R2X3 ‒ R′2X3 ‒ PbX (DIVX2) (R, R′ ‒ Y, La, Ce, Pr, Tb, Dy, Ho, Er; DIV ‒ Si, Ge, Sn; X ‒ S, Se) за температури 770 К : дис. … канд. хім. наук : 02.00.01. Ужгород, 2018. 168 с.
Мельничук, Х. Системи на основі сполук R2S3, MeS, Sn(Si)S2 (R ‒ РЗМ, Ме ‒ Pb, Fe, Co, Ni): Фазові рівноваги, кристалічна структура і властивості сульфідних фаз: дис. … канд. хім. наук : 02.00.01. Ужгород, 2021. 202 с.
Blashko, N., Smitiukh, O., Marchuk, O. The crystal structure of La3Pb0.1Ga1.6S7 and Pr3Pb0.1Ga1.6S7 compounds. Physics and сhemistry of solid state. 2022. 23(1). P. 96-100. doi:10.15330/pcss.23.1.96-10
Grin, Y., Akselrud, L. WinCSD: Software package for crystallographic calculations (Version 4). J. Appl. Cryst. 2014. 47(2). Р. 803-805. doi:10.1107/s1600576714001058
Momma, K., Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst. 2011. 44(6). Р. 1272-1276. doi:10.1107/S0021889811038970
Patrie, M., Guittard, M. Chimie minerale. Sur les composes du type Ce6Al10/3S14. C. R. Acad. Sci. 1969. 268. P. 1136-1138.
Guittard, M., Julien-Pouzol M. Les composes hexagonaux de type La3CuSiS7. Bull. Soc. Chim. Fr. 1972. 3. P. 2207-2209.