MAIN TRENDS IN THE IMPLEMENTATION OF THE STEM CONCEPT IN THE EDUCATIONAL PROCESS IN PHYSICS
DOI:
https://doi.org/10.32782/pet-2024-2-3Keywords:
STEM education, artificial intelligence, virtual reality, augmented reality, digital divide, blended learning, sustainable development, multimodal learning, educational innovations, critical thinkingAbstract
The concept that unites science, technology, engineering and mathematics is gaining more and more importance in the context of preparing pupils and students to work in modern high-tech sectors of the economy. The article examines the main trends in the implementation of the STEM (science, technology, engineering, mathematics) concept in the educational process in 2024, in particular in the context of current challenges and opportunities. The article describes the use of artificial intelligence to individualise learning, the introduction of immersive technologies, such as virtual and augmented reality, for a deeper understanding of the material. The article analyses ways to bridge the digital divide and integrate sustainability principles into educational programmes. The advantages of blended learning and a multimodal approach to teaching are discussed. The authors also highlight the main challenges faced by educators in implementing these innovations and offer recommendations for the further development of STEM education. The results of the study emphasize the importance of integrating modern technologies into STEM education. The use of artificial intelligence and virtual reality has shown significant advantages in the educational process, in particular, the possibility of personalizing learning and improving the understanding of complex topics. AI has proven to be useful in adapting learning materials to the individual needs of students, which is especially important in classes with different levels of groups. VR and AR have made learning more immersive by helping students absorb information better through interactive and visual methods. However, the study also revealed existing challenges that stand in the way of the full integration of these technologies. Among them are the high cost of equipment, insufficient technical training of teachers, and a significant digital divide, which makes it difficult for students in small towns and rural areas to access technology. These factors create unequal conditions for students and limit the potential of using the latest technologies.
References
Kelley T. R., Knowles J. G. A conceptual framework for integrated STEM education. International Journal of STEM Education. 2016. 3(1). 11–19. doi: 10.1186/s40594-016-0046-z
Sanders M. STEM, STEM Education, STEMmania. The Technology Teacher, 2009. 68(4). 20–26.
Honey M., Pearson G., Schweingruber H. (Eds.). STEM Integration in K-12 Education: Status, Prospects, and an Agenda for Research. Washington, DC: The National Academies Press. 2014.
Поліхун Н. І., Постова К. Г., Сліпухіна І. А., Онопченко Г. В., Онопченко О. В. Упровадження STEM-освіти в умовах інтеграції формальної і неформальної освіти обдарованих учнів: методичні рекомендації. Київ: Педагогічна думка. 2019.
Барна О. В., Балик Н. Р. Впровадження STEM-освіти у навчальних закладах: етапи та моделі. Київ: Інститут модернізації змісту освіти. 2017.
Олексюк О. Р. Елементи STEM-освіти у початковій школі. Наукові записки. Серія: Педагогічні науки. 2017. 1(167). 145–150.
Свид І. В., Чумак В. С., Бойко Н. В. Регіональний центр STEM-освіти технічного розвитку молоді (Doctoral dissertation, ДДМА). 2020.
Bybee R. W. Advancing STEM Education: A 2020 Vision. Technology and Engineering Teacher. 2010. 70(1). 30–35.
Becker K., Park K. Effects of integrative approaches among STEM subjects on students’ learning: A preliminary meta-analysis. Journal of STEM Education: Innovations and Research. 2011.12(5/6). 23–37.