SYNTHESIS AND EVALUATION ANTIOXIDANT ACTIVITY OF 3-ARYL-5,6,7,8-TETRAHYDROTHIAZOLO[3,2-a][1,3]DIAZEPINES

Authors

DOI:

https://doi.org/10.32782/pcsd-2024-4-4

Keywords:

thiazolo[3,2-a][1,3]diazepines, 1,3-diazepane-2-thione, α-bromoacetophenones, cyclocondensation, antioxidant activity

Abstract

The 1,3-diazepine core is part of many biologically active compounds, for instance, the natural product coformycin with antiviral and anticancer effects, the anticancer drug pentostatin, and the β-lactamase inhibitor avibactam. Our analysis of literature sources showed that thiazolo[3,2-a][1,3]diazepines, which have proven potential anticonvulsant agents and inhibitors of platelet aggregation, have received increased attention from scientists in recent decades. The short-acting hypnotic HIE-124 is worth noting among them which has the potential to be used with sodium thiopental to maintain anesthesia for a longer period. The subject of the presented research is the synthesis and assessment of antioxidant activity of 3-aryl-5,6,7,8- tetrahydrothiazolo[3,2-a][1,3]diazepines. 1,3-Diazepane-2-thione was used as a basic substrate in a cyclocondensation reaction with α-bromoacetophenones to obtain the target 3-aryl-5,6,7,8-tetrahydrothiazolo[3,2-a][1,3]diazepines. The composition and structure of the synthesized derivatives was reliably proven by a set of physical and chemical analyses, including 1H-, 13C-NMR spectroscopy and chromatography-mass spectrometry, as well as elemental analysis data. The antioxidant activity of the synthesized 3-aryl-5,6,7,8-tetrahydrothiazolo[3,2-a][1,3]diazepines was assessed by the inhibition of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals. The screening results showed that all derivatives are characterized by promising antioxidant activity with radical absorption level of 90.6 – 97.6 %. The highest rate of inhibition was demonstrated by 3-(4-bromophenyl)-5,6,7,8-tetrahydrothiazolo[3,2-a][1,3]diazepine 6 (I = 97.6 %), and the lowest by 3-(3-nitrophenyl)-5,6,7,8-tetrahydrothiazolo[3,2-a][1,3]diazepine 4 (I = 90.6 %).

References

Malki Y., Martinez J., Masurier N. 1,3-Diazepine: A privileged scaffold in medicinal chemistry. Med. Res. Rev. 2021. 41(4). Pp. 2247–2315.

El-Subbagh H. I. Novel GABAA Agonist Entities: Pharmacological Investigation and Molecular Modeling Study of Thiazolo- and Thiadiazolo-[3,2-a][1,3]diazepine Analogs. Mini Rev. Med. Chem. 2021. 21(9). Pp. 1048–1057.

Kadi A. A., El-Kashef H. A., Abdel-Aziz A. A., Hassan G. S., Tettey J., Grant M. H., Lehmann J., El-Subbagh H. I. Synthesis, ultra-short acting hypnotic activity, and metabolic profile of ethyl 8-oxo-5,6,7,8-tetrahydrothiazolo[3,2-a][1,3]diazepin-3-carboxylate (HIE-124). Arch. Pharm. 2008. 341(2). Pp. 81–89.

El-Subbagh H. I., Hassan G. S., El-Azab A. S., Abdel-Aziz A. A., Kadi A. A., Al-Obaid A. M., Al-Shabanah O. A., Sayed-Ahmed M. M. Synthesis and anticonvulsant activity of some new thiazolo[3,2-a][1,3]diazepine, benzo[d] thiazolo[5,2-a][12,6]diazepine and benzo[d]oxazolo[5,2-a][12,6]diazepine analogues. Eur. J. Med. Chem. 2011. 46(11). Pp. 5567–5572.

Elslager E. F., McLean J. R., Perricone S. C., Potoczak D., Veloso H., Worth D. F., Wheelock R. H. Inhibitors of platelet aggregation. 1. 5,10-Dihydro-3-(phenyl, thienyl, and furyl)thiazolo[3,2-b][2,4]benzodiazepines and related compounds. J. Med. Chem. 1971. 14(5). Pp. 397– 401.

Battin E. E., Brumaghim J. L. Antioxidant activity of sulfur and selenium: a review of reactive oxygen species scavenging, glutathione peroxidase, and metal-binding antioxidant mechanisms. Cell Biochem.Biophys. 2009. 55(1). Pp. 1–23.

Djukic M., Fesatidou M., Xenikakis I., Geronikaki A., Angelova V. T., Savic V., Pasic M., Krilovic B., Djukic D., Gobeljic B., Pavlica M., Djuric A., Stanojevic I., Vojvodic D., Saso L. In vitro antioxidant activity of thiazolidinone derivatives of 1,3-thiazole and 1,3,4-thiadiazole. Chem. Biol. Interact. 2018. 286. Pp. 119–131.

Chaban T., Ogurtsov V., Mahlovanyy A., Sukhodolska N., Chaban I., Harkov S., Matiychuk V. Antioxidant properties of some novel derivatives thiazolo[4,5-b] pyridine. Pharmacia. 2019. 66(4). Pp. 171–180.

Pokorny J. Are natural antioxidants better – and safer – than synthetic antioxidants? Eur. J. Lipid Sci. Technol. 2007. 109(6). Pp. 629–642.

Stoia M., Oancea S. Low-Molecular-Weight Synthetic Antioxidants: Classification, Pharmacological Profile, Effectiveness and Trends. Antioxidants (Basel, Switzerland). 2022. 11(4). Pp. 638.

Mckay A. F., Kreling M.-E. Preperation and Chemistry of Δ8-hexahydro-1,4,8-pyrimidazole, Δ9-1,5,9-triazabicyclo[4.4.0]decene, and Δ9-1,4,9- triazabicyclo[5.3.0]decene. Can. J. Chem. 1957. 35(12). Pp. 1438–1445.

Ding C., Wang S., Sheng Y., Dai Q., Zhao Y., Liang G., Song Z. One-step construction of unsymmetrical thioureas and oxazolidinethiones from amines and carbon disulfide via a cascade reaction sequence. RSC Adv., 2019. 9(46). Pp. 26768–26772.

Brand-Williams W., Cuvelier M. E., Berset C. Use of a free radical method to evaluate antioxidant activity. LWT – Food Sci. Technol. 1995. 28(1). Pp. 25–30.

Published

2024-12-30

How to Cite

SALIYEVA Л., SLYVKA Н., TKACHUK В., & VOVK М. (2024). SYNTHESIS AND EVALUATION ANTIOXIDANT ACTIVITY OF 3-ARYL-5,6,7,8-TETRAHYDROTHIAZOLO[3,2-a][1,3]DIAZEPINES. Problems of Chemistry and Sustainable Development, (4), 25–30. https://doi.org/10.32782/pcsd-2024-4-4

Most read articles by the same author(s)

1 2 > >>